zbMATH — the first resource for mathematics

A computational study on the instrumented sharp indentations with dual indenters. (English) Zbl 1169.74507
Summary: Finite element analysis was performed to investigate the indentation response of elasto-plastic solids for conical indenters of half included angles of \(60^\circ \) and \(70.3^\circ \). The interdependence indentation parameters resulting from a single indentation load-depth curve is considered. Regarding dimensional analysis, several dimensionless relationships are constructed as functions of the reduced elastic modulus-loading curvature ratio \(E^{*}/C\) and the strain hardening exponent \(n\). Further, the duality between corresponding parameters with dual indenters is explored. Finally, a new method based on dual indenters is proposed to extract the strain hardening exponent and the reduced elastic modulus of an indented material. The accuracy of this method is verified and discussed with experimental data from the literature and representative materials.

74M15 Contact in solid mechanics
74S05 Finite element methods applied to problems in solid mechanics
Full Text: DOI
[1] Alkorta, J.; Martinez-Esnaola, J. M.; Sevillano, J. Gil: Absence of one-to-one correspondence between elastoplastic properties and sharp-indentation load-penetration data, J. mater. Res. 20, No. 2, 432-437 (2005)
[2] Atkins, A. G.; Tabor, D.: Plastic indentation in metals with cones, J. mech. Phys. solids 13, 149-164 (1965)
[3] Bucaille, J. L.; Stauss, S.; Felder, E.; Michler, J.: Determination of plastic properties of metals by instrumented indentation using different sharp indenters, Acta mater. 51, 1663-1678 (2003)
[4] Cao, Y. P.; Lu, J.: Depth-sensing instrumented indentation with dual sharp indenters: stability analysis and corresponding regularization schemes, Acta mater. 52, 1143-1153 (2004)
[5] Capehart, T. W.; Cheng, Y. T.: Determining constitutive models from conical indentation: sensitivity analysis, J. mater. Res. 18, No. 4, 827-832 (2003)
[6] Chen, X.; Ogasawara, N.; Zhao, M.; Chiba, N.: On the uniqueness of measuring elastoplastic properties from indentation: the indistinguishable mystical materials, J. mech. Phys. solids 55, 1618-1660 (2007) · Zbl 1176.74029 · doi:10.1016/j.jmps.2007.01.010
[7] Cheng, Y. T.; Cheng, C. M.: Scaling, dimensional analysis, and indentation measurements, Mater. sci. Eng. R rep. 44, No. 4 – 5, 91-149 (2004)
[8] Cheng, Y. T.; Cheng, C. M.: Can stress – strain relationships be obtained from indentation curves using conical and pyramidal indenters?, J. mater. Res. 14, No. 9, 3493-3496 (1999)
[9] Cheng, Y. T.; Li, Z.; Cheng, C. M.: Scaling relationships for indentation measurements, Philos. mag. A 82, No. 10, 1821-1829 (2002)
[10] Chollacoop, N.; Dao, M.; Suresh, S.: Depth-sensing instrumented indentation with dual sharp indenters, Acta mater. 51, 3713-3729 (2003)
[11] Dao, M.; Chollacoop, N.; Van Vliet, K. J.; Venkatesh, T. A.; Suresh, S.: Computational modeling of the forward and reverse problems in instrumented sharp indentation, Acta mater. 49, No. 19, 3899-3918 (2001)
[12] Dicarlo, A.; Yang, H. T. Y.; Chandrasekar, S.: Semi-inverse method for predicting stress – strain relationship from cone indentations, J. mater. Res. 18, 2068-2078 (2003)
[13] Doerner, M. F.; Nix, W. D.: A method for interpreting the data from depth-sensing indentation instruments, J. mater. Res. 1, No. 4, 601-609 (1986)
[14] Fischer-Cripps, A. C.: Nanoindentation, (2004)
[15] Futakawa, M.; Wakui, T.; Tanabe, Y.; Ioka, I.: Identification of the constitutive equation by the indentation technique using plural indenters with different apex angles, J. mater. Res. 16, 2283-2292 (2001)
[16] Johnson, K. L.: Contact mechanics, (1985) · Zbl 0599.73108
[17] Lan, H.; Venkatesh, T. A.: Determination of the elastic and plastic properties of materials through instrumented indentation with reduced sensitivity, Acta mater. 55, 2025-2041 (2007)
[18] Lawn, B. R.; Howes, V. R.: Elastic recovery at hardness indentations, J. mater. Sci., No. 10, 2745-2752 (1981)
[19] Lin, S.; Hills, D. A.; Warren, P. D.: A theoretical investigation of sharp indentation testing of a nearly-brittle material, with some experimental results, J. mech. Phys. solids 48, No. 10, 2057-2075 (2000) · Zbl 0979.74052 · doi:10.1016/S0022-5096(00)00002-8
[20] Luo, J.; Lin, J.: A study on the determination of plastic properties of metals by instrumented indentation using two sharp indenters, Int. J. Solids struct. 44, No. 18 – 19, 5803-5817 (2007) · Zbl 1178.74070 · doi:10.1016/j.ijsolstr.2007.01.029
[21] Luo, J.; Lin, J.; Dean, T. A.: A study on the determination of mechanical properties of a power-law material by its indentation force – depth curve, Philos. mag. 86, No. 19, 2881-2905 (2006)
[22] Marx, V.; Balke, H.: A critical investigation of the unloading behavior of sharp indentation, Acta mater. 45, No. 9, 3791-3800 (1997)
[23] Ogasawara, N.; Chiba, N.; Chen, X.: Representative strain of indentation analysis, J. mater. Res. 20, 2225-2234 (2005)
[24] Ogasawara, N.; Chiba, N.; Chen, X.: Limit analysis-based approach to determine the material plastic properties with conical indentation, J. mater. Res. 21, 947-958 (2006)
[25] Oliver, W. C.; Pharr, G. M.: An improved technique for determining hardness and elastic-modulus using load and displacement sensing indentation experiments, J. mater. Res. 7, No. 6, 1564-1583 (1992)
[26] Oliver, W. C.; Pharr, G. M.: Review: measurement of hardness and elastic modulus by instrumented indentation: advances in understanding and refinements to methodology, Journal of materials research 19, No. 1, 3-20 (2004)
[27] Pharr, G. M.; Bolshakov, A.: Understanding nanoindentation unloading curves, J. mater. Res. 17, No. 10, 2660-2671 (2002)
[28] Swaddiwudhipong, S.; Tho, K. K.; Liu, Z. S.; Zeng, K.: Material characterization based on dual indenters, Int. J. Solids struct. 42, 69-83 (2005) · Zbl 1093.74517 · doi:10.1016/j.ijsolstr.2004.07.027
[29] Tho, K. K.; Swaddiwudhipong, S.; Liu, Z. S.; Zeng, K.: Simulation of instrumented indentation and material characterization, Mater. sci. Eng. A, No. 1 – 2, 202-209 (2005) · Zbl 1093.74517
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.