×

zbMATH — the first resource for mathematics

Well-posedness of the infinite Prandtl number model for convection with temperature-dependent viscosity. (English) Zbl 1169.35369

MSC:
35Q35 PDEs in connection with fluid mechanics
35B65 Smoothness and regularity of solutions to PDEs
80A20 Heat and mass transfer, heat flow (MSC2010)
76D03 Existence, uniqueness, and regularity theory for incompressible viscous fluids
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] DOI: 10.1016/j.aml.2007.07.036 · Zbl 1183.65110 · doi:10.1016/j.aml.2007.07.036
[2] Constantin P., J. Math. Phys. 42 pp 784–
[3] DOI: 10.1017/S0022112006000097 · Zbl 1122.76080 · doi:10.1017/S0022112006000097
[4] Lions J. L., Quelques méthodes de re’solution des problémes aux limites non linéaires (1968)
[5] DOI: 10.1016/S0362-546X(97)00635-4 · Zbl 0930.35136 · doi:10.1016/S0362-546X(97)00635-4
[6] DOI: 10.1007/s00211-005-0589-2 · Zbl 1082.65090 · doi:10.1007/s00211-005-0589-2
[7] Temam R., Studies in Mathematics and Its Applications, in: Navier–Stokes Equations, Theory and Numerical Analysis (1977)
[8] Turcotte D. L., Geodynamics Applications of Continuum Physics to Geological Problems (1982)
[9] DOI: 10.1002/cpa.3047 · Zbl 1112.76032 · doi:10.1002/cpa.3047
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.