zbMATH — the first resource for mathematics

Quantised \(H_\infty \) filter design for discrete-time systems. (English) Zbl 1168.93406
Summary: This article is concerned with the quantised \(H_{\infty }\) filtering problem for discrete-time systems. The quantiser considered here is dynamic and composed of a dynamic scaling and a static quantiser. Motivated by practical transmission channels requirements, the static quantiser ranges are fully considered in this article. A quantised \(H_{\infty }\) filter design strategy is proposed, taking quantiser errors into account, where a convex optimisation method is developed to minimise static quantiser ranges with meeting \(H_{\infty }\) performance requirement for quantised augmented systems. A numerical example is given to illustrate the effectiveness of the proposed filter design method.

93E11 Filtering in stochastic control theory
93C55 Discrete-time control/observation systems
90B18 Communication networks in operations research
15A39 Linear inequalities of matrices
94A12 Signal theory (characterization, reconstruction, filtering, etc.)
LMI toolbox
Full Text: DOI
[1] DOI: 10.1109/LSP.2006.874448
[2] DOI: 10.1109/9.867021 · Zbl 0988.93069
[3] Baillieul J, Stochastic Theory and Control, Lecture Notes in Control and Information Sciences pp 35– (2001)
[4] DOI: 10.1016/j.ins.2007.05.025 · Zbl 1126.93338
[5] DOI: 10.1109/TSP.2003.822357 · Zbl 1369.94334
[6] DOI: 10.1109/9.58500 · Zbl 0719.93067
[7] DOI: 10.1109/9.948466 · Zbl 1059.93521
[8] DOI: 10.1115/1.2906789
[9] DOI: 10.1109/TAC.2003.816982 · Zbl 1364.93561
[10] DOI: 10.1109/TAC.2005.858689 · Zbl 1365.81064
[11] DOI: 10.1109/CDC.2006.377188
[12] Gahinet P, LMI Control Toolbox (1995)
[13] DOI: 10.1109/CDC.2006.377375
[14] DOI: 10.1016/S0005-1098(03)00151-1 · Zbl 1030.93042
[15] DOI: 10.1109/TAC.2005.847044 · Zbl 1365.93470
[16] DOI: 10.1109/TSP.2005.859342 · Zbl 1372.65373
[17] DOI: 10.1016/S0005-1098(02)00285-6 · Zbl 1012.93050
[18] Sahai A, in Proceedings of the 43rd IEEE Conference on Decision and Control 2 pp 1896– (2004)
[19] Tatikonda S, Ph.D. thesis (2000)
[20] DOI: 10.1109/TAC.2004.831102 · Zbl 1365.94341
[21] DOI: 10.1109/78.735317
[22] DOI: 10.1109/9.763226 · Zbl 1136.93429
[23] DOI: 10.1109/TSP.2007.893906 · Zbl 1391.94458
[24] Zhai G, in Proceedings of the 16th IFAC World Congress (2005)
[25] DOI: 10.1109/ICNSC.2006.1673170
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.