×

zbMATH — the first resource for mathematics

Design and experimental validation of a second-order sliding-mode motion controller for robot manipulators. (English) Zbl 1168.93321
Summary: This article presents an original motion control strategy for robot manipulators based on the coupling of the inverse dynamics method with the so-called second-order sliding mode control approach. Using this method, in principle, all the coupling nonlinearities in the dynamical model of the manipulator are compensated, transforming the multi-input nonlinear system into a linear and decoupled one. Actually, since the inverse dynamics relies on an identified model, some residual uncertain terms remain and perturb the linear and decoupled system. This motivates the use of a robust control design approach to complete the control scheme. In this article the sliding mode control methodology is adopted. Sliding mode control has many appreciable features, such as design simplicity and robustness versus a wide class of uncertainties and disturbances. Yet conventional sliding mode control seems inappropriate to be applied in robotics since it can generate the so-called chattering effect, which can be destructive for the controlled robot. This problem is suitably circumvented by designing a second-order sliding mode controller capable of generating a continuous control law making the proposed sliding mode controller actually applicable to industrial robots. To build the inverse dynamics part of the proposed controller, a suitable dynamical model of the system has been formulated, and its parameters have been accurately identified relying on a practical MIMO identification procedure recently devised. The proposed inverse dynamics-based second-order sliding mode controller has been experimentally tested on a COMAU SMART3-S2 industrial manipulator, demonstrating the tracking properties and the good performances of the controlled system.

MSC:
93B12 Variable structure systems
93C85 Automated systems (robots, etc.) in control theory
68T40 Artificial intelligence for robotics
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] DOI: 10.1115/1.3140646 · Zbl 0517.93042 · doi:10.1115/1.3140646
[2] DOI: 10.1109/37.67672 · doi:10.1109/37.67672
[3] Adam MJK, Basics of Robotics: Theory and Components of Manipulators and Robots (1999)
[4] Asada H, Robot Analysis and Control (1986)
[5] DOI: 10.1007/BFb0109984 · doi:10.1007/BFb0109984
[6] DOI: 10.1023/A:1008318928840 · Zbl 0980.93055 · doi:10.1023/A:1008318928840
[7] DOI: 10.1016/S0005-1098(97)00147-7 · Zbl 0906.93023 · doi:10.1016/S0005-1098(97)00147-7
[8] DOI: 10.1109/9.661074 · Zbl 0904.93003 · doi:10.1109/9.661074
[9] DOI: 10.1109/9.880629 · Zbl 0990.93012 · doi:10.1109/9.880629
[10] DOI: 10.1016/0005-1098(94)00154-B · Zbl 0825.93097 · doi:10.1016/0005-1098(94)00154-B
[11] DOI: 10.1080/0020717031000138638 · Zbl 1048.93070 · doi:10.1080/0020717031000138638
[12] DOI: 10.1080/0020717031000099010 · Zbl 1070.93011 · doi:10.1080/0020717031000099010
[13] DOI: 10.1109/TAC.2005.854655 · Zbl 1365.93066 · doi:10.1109/TAC.2005.854655
[14] DOI: 10.1109/TAC.2004.829615 · Zbl 1365.93067 · doi:10.1109/TAC.2004.829615
[15] DOI: 10.1109/TAC.2007.899090 · Zbl 1366.93093 · doi:10.1109/TAC.2007.899090
[16] DOI: 10.1007/978-1-84628-974-3_12 · doi:10.1007/978-1-84628-974-3_12
[17] Capisani LM, in Proceedings IEEE/ASME International Conference on Advanced Intelligient Mechatronics (2007)
[18] DOI: 10.1177/0278364906063830 · Zbl 05421986 · doi:10.1177/0278364906063830
[19] Chen Y, National Science Council ROC(A) 23 pp 281– (1999)
[20] DOI: 10.1109/41.232228 · doi:10.1109/41.232228
[21] Colbaugh RD, in Proceedings IEEE Industry Applications Conference 2 pp 1170– (2000)
[22] Craig JJ, Adaptive Control of Mechanical Manipulators (1988)
[23] DOI: 10.1109/TAC.2005.858636 · Zbl 1365.93071 · doi:10.1109/TAC.2005.858636
[24] Edwards C, Sliding Mode Control: Theory and Applications (1998)
[25] DOI: 10.1007/s10846-006-9101-1 · Zbl 05193615 · doi:10.1007/s10846-006-9101-1
[26] DOI: 10.1109/9.940930 · Zbl 1007.93010 · doi:10.1109/9.940930
[27] DOI: 10.1109/70.370505 · doi:10.1109/70.370505
[28] DOI: 10.1109/TCST.2004.838558 · doi:10.1109/TCST.2004.838558
[29] Juang JN, NaSA/Tm-1998-208744 pp 1– (1998)
[30] Koivo AJ, Fundamentals for Control of Robotic Manipulators (1989)
[31] DOI: 10.1109/9.29408 · Zbl 0687.93040 · doi:10.1109/9.29408
[32] DOI: 10.1115/1.3153015 · Zbl 0682.93039 · doi:10.1115/1.3153015
[33] DOI: 10.1080/00207179308923053 · Zbl 0789.93063 · doi:10.1080/00207179308923053
[34] DOI: 10.1016/S0005-1098(97)00209-4 · Zbl 0915.93013 · doi:10.1016/S0005-1098(97)00209-4
[35] Levant A, Kybernetika 36 pp 77– (2000)
[36] DOI: 10.1016/j.automatica.2004.11.029 · Zbl 1093.93003 · doi:10.1016/j.automatica.2004.11.029
[37] DOI: 10.1109/9.746266 · Zbl 0958.93072 · doi:10.1109/9.746266
[38] DOI: 10.1016/0005-1098(89)90054-X · Zbl 0695.93064 · doi:10.1016/0005-1098(89)90054-X
[39] Perk JS, Transactions on Control, Automation and Systems Engineering 3 pp 15– (2001)
[40] Poignet Ph, in Proceedings 6th International Workshop on Advanced Motion Control pp 401– (2000) · doi:10.1109/AMC.2000.862901
[41] Richalet J, in Proceedings 10th IFAC World Congress pp 251– (1997)
[42] DOI: 10.1109/TAC.1987.1104468 · Zbl 0624.93054 · doi:10.1109/TAC.1987.1104468
[43] Sciavicco L, Modelling and Control of Robot Manipulators, 2. ed. (2000) · Zbl 0944.70001 · doi:10.1007/978-1-4471-0449-0
[44] DOI: 10.1049/ip-cta:19960378 · Zbl 0852.93066 · doi:10.1049/ip-cta:19960378
[45] Spong MW, Robot Control: Dynamics, Motion Planning, and Analysis (1993)
[46] Utkin VI, in Preprints IFAC Conference on Nonlinear Control pp 484– (1989)
[47] Utkin VI, Sliding Mode Control in Electromechanical Systems (1999)
[48] Utkin V, Sliding Modes in Control and Optimisation (1992) · doi:10.1007/978-3-642-84379-2
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.