zbMATH — the first resource for mathematics

Dynamic behavior for a nonautonomous SIRS epidemic model with distributed delays. (English) Zbl 1168.92327
Summary: A nonautonomous SIRS epidemic model with distributed delays is investigated. Two new threshold values, \(R_{*}\) and \(R^{*}\) are derived. The model is permanent as \(R_{*}>1\), and \(R^{*}<1\) implies the extinction of the disease. Using the Lyapunov functional method, the global behavior of the model is studied.

92D30 Epidemiology
34K60 Qualitative investigation and simulation of models involving functional-differential equations
34K20 Stability theory of functional-differential equations
Full Text: DOI
[1] Kermark, M.D.; Mckendrick, A.G., Contributions to the mathematical theory of epidemics. part I, Proc. royal soc. A, 115, 5, 700-721, (1927) · JFM 53.0517.01
[2] Diekmann, O.; Heesterbeek, J.A.P., Mathematical epidemiology of infectious diseases: model building, analysis and interpretation, (2000), John Wiley & Sons Ltd. Chichester, New York · Zbl 0997.92505
[3] Anderson, R.M.; May, R.M., Population biology of infectious diseases: part I, Nature, 280, 361-367, (1979)
[4] Capasso, V., Mathematical structures of epidemic systems, Lecture notes in biomathematics, vol. 97, (1993), Springer-Verlag Berlin · Zbl 0798.92024
[5] Ma, Z.; Zhou, Y.; Wang, W.; Jin, Z., Mathematical modelling and research of epidemic dynamical systems, (2004), Science Press Beijing
[6] Cooke, K.L., Stability analysis for a vector diease model, Rocky mt. J. math., 7, 253-263, (1979)
[7] Beretta, E.; Takeuchi, Y., Global stability of an SIR epidemic model with time delay, J. math. biol., 33, 250-260, (1995) · Zbl 0811.92019
[8] Beretta, E.; Takeuchi, Y., Convergence results in SIR epidemic models with varying population sizes, Nonlinear anal., 28, 1909-1921, (1997) · Zbl 0879.34054
[9] Takeuchi, Y.; Ma, W.; Beretta, E., Global asymptotic properties of a delay SIR epidemic model with finite incubation times, Nonlinear anal., 42, 931-947, (2000) · Zbl 0967.34070
[10] Ma, W.; Takeuchi, Y.; Hara, T.; Beretta, E., Permanence of an SIR epidemic model with distributed time delays, Tohoku math. J., 54, 581-591, (2002) · Zbl 1014.92033
[11] Ma, W.; Song, M.; Takeuchi, Y., Global stability of an SIR epidemic model with time delay, Appl. math. lett., 17, 1141-1145, (2004) · Zbl 1071.34082
[12] Earn, D.J.D.; Dushoff, J.; Levin, S.A., Ecology and evolution of the flu, Trends ecol. evolut., 17, 334-340, (2002)
[13] London, W.; Yorke, J.A., Recurrent outbreaks of measles, clickenpox and mumps i.seasonal variation in contact rates American, J. epidemiol., 98, 453-468, (1973)
[14] Al-Ajam, M.R.; Bizri, A.R.; Mokhbat, J.; Weedon, J.; Lutwick, L., Mucormycosis in the eastern Mediterranean: a seasonal disease, Epidemiol. infect., 134, 341-346, (2006)
[15] Coutinho, F.A.B.; Burattini, M.N.; Lopez, L.F.; Massada, E., Threshold conditions for a non-autonomous epidemic system describing the population dynamics of dengue, Bull. math. biol., 68, 2263-2282, (2006) · Zbl 1296.92226
[16] Thieme, H.R., Uniform persistence and permanence for nonautonomous semiflows in population biology, Math. biosci., 166, 173-201, (2000) · Zbl 0970.37061
[17] Thieme, H.R., Uniform weak implies uniform strong persistence for non-autonomous semiflows, Proc. am. math. soci., 127, 2395-2403, (1999) · Zbl 0918.34053
[18] Herzog, G.; Redheffer, R., Nonautonomous SEIRS and thron models for epidemiology and cell biology, Nonlinear anal.: RWA, 5, 33-44, (2004) · Zbl 1067.92053
[19] Zhang, T.; Teng, Z., On a nonautonomous SEIRS model in epidemiology, Bull. math. biol., 69, 2537-2559, (2007) · Zbl 1245.34040
[20] Kuang, Y., Delay differential equations with applications in population dynamics, (1993), Academic Press San Diego · Zbl 0777.34002
[21] Teng, Z.; Chen, L., The positive periodic solutions of periodic kolmogorove type systems with delays, Acta math. appl. sin., 22, 3, 446-456, (1999), (in Chinese) · Zbl 0976.34063
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.