×

zbMATH — the first resource for mathematics

Dynamical view of pair creation in uniform electric and magnetic fields. (English) Zbl 1168.81026
Summary: Pair creation in a uniform classical electromagnetic field (Schwinger mechanism) is studied focusing on the time evolution of the distribution of created particles. The time evolution of the distribution in time-dependent fields is also presented as well as effects of back reaction. Motivated by the Glasma flux tube, which may be formed at the initial stage of heavy-ion collisions, we investigate effects of a magnetic field parallel to an electric field, and find that the magnetic field makes the evolution of a fermion system faster.

MSC:
81V10 Electromagnetic interaction; quantum electrodynamics
81V35 Nuclear physics
81T16 Nonperturbative methods of renormalization applied to problems in quantum field theory
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Klein, O., Z. phys., 53, 157, (1929)
[2] Sauter, F., Z. phys., Z. phys., 73, 547, (1931)
[3] Heisenberg, W.; Euler, H., Z. phys., 98, 714, (1936)
[4] G.V. Dunne, hep-th/0406216.
[5] Schwinger, J., Phys. rev., 82, 664, (1951)
[6] Yildiz, A.; Cox, P.H., Phys. rev. D, 21, 1095, (1980)
[7] Ambjørn, J.; Hughes, R.J., Ann. phys., 145, 340, (1983)
[8] Gyulassy, M.; Iwazaki, A., Phys. lett. B, 165, 157, (1985)
[9] Nayak, G.C.; Nieuwenhuizen, P., Phys. rev. D, 71, 125001, (2005)
[10] Nayak, G.C., Phys. rev. D, 72, 125010, (2005)
[11] Brout, R.; Massar, S.; Parentani, R.; Spindel, Ph., Phys. rep., 260, 329, (1995)
[12] T. Damour, in: R. Ruffini (Ed.), Proceedings of the First Marcel Grossmann Meeting on General Relativity, North-Holland, New York, 1977, p. 459.
[13] Birrell, N.D.; Davies, P.C.W., Quantum fields in curved space, (1982), Cambridge University Press Cambridge, MA · Zbl 0476.53017
[14] Fulling, S.A., Aspects of quantum field theory in curved space-time, (1989), Cambridge University Press Cambridge, MA · Zbl 0677.53081
[15] T. Oka, H. Aoki, cond-mat.str-el/0803.0422.
[16] Green, A.G.; Sondhi, S.L., Phys. rev. lett., 95, 267001, (2005)
[17] Ringwald, A., Phys. lett. B, 510, 107, (2001)
[18] Soffel, M.; Müller, B.; Greiner, W., Phys. rep., 85, 51, (1982)
[19] Greiner, W.; Müller, B.; Rafelski, J., Quantum electrodynamics of strong fields, (1985), Springer Berlin
[20] Usov, V.V., Phys. rev. lett., 80, 230, (1998)
[21] E. Iancu, R. Venugopalan, hep-ph/0303204.
[22] Casher, A.; Neuberger, H.; Nussinov, S., Phys. rev. D, 20, 179, (1979)
[23] Andersson, B.; Gustafson, G.; Ingelman, G.; Sjöstrand, C., Phys. rep., 97, 31, (1983)
[24] Neuberger, H., Phys. rev. D, 20, 2936, (1979)
[25] Wang, R.C.; Wong, C.Y., Phys. rev. D, 38, 348, (1988)
[26] Kim, S.P.; Page, D.N., Phys. rev. D, 75, 045013, (2007)
[27] Gatoff, G.; Wong, C.Y., Phys. rev. D, 46, 997, (1992)
[28] Wong, C.Y.; Wang, R.C.; Wu, J.S., Phys. rev. D, 51, 3940, (1995)
[29] Schönfeld, Th.; Schäfer, A.; Müller, B.; Sailer, K.; Reinhardt, J.; Greiner, W., Phys. lett. B, 247, 5, (1990)
[30] Gitman, D.M., J. phys. A, 10, 2007, (1977)
[31] Glendenning, N.K.; Matsui, T., Phys. rev. D, 28, 2890, (1983)
[32] Kluger, Y.; Eisenberg, J.M.; Svetitsky, B.; Cooper, F.; Mottola, E., Phys. rev. lett., Phys. rev. D, Phys. rev. D, 48, 190, (1993)
[33] Kluger, Y.; Eisenberg, J.M.; Svetitsky, B., Int. J. mod. phys. E, 2, 333, (1993)
[34] Kluger, Y.; Mottola, E.; Eisenberg, J.M., Phys. rev. D, 58, 125015, (1998)
[35] Kajantie, K.; Matsui, T., Phys. lett. B, 164, 373, (1985)
[36] Gatoff, G.; Kerman, A.K.; Matsui, T., Phys. rev. D, 36, 114, (1987)
[37] Asakawa, M.; Matsui, T., Phys. rev. D, 43, 2871, (1991)
[38] Rau, J., Phys. rev. D, 50, 6911, (1994)
[39] Rau, J.; Müller, B., Phys. rep., 272, 1, (1996)
[40] Schmidt, S.M.; Blaschke, D.; Röpke, G.; Smolyansky, S.A.; Prozorkevich, A.V.; Toneev, V.D., Int. J. mod. phys. E, Phys. rev. D, 59, 094005, (1999)
[41] Bloch, J.C.R.; Mizerny, V.A.; Prozorkevich, A.V.; Roberts, C.D.; Schmidt, S.M.; Smolyansky, S.A.; Vinnik, D.V., Phys. rev. D, 60, 116011, (1999)
[42] Vinnik, D.V.; Prozorkevich, A.V.; Smolyansky, S.A.; Toneev, V.D.; Hecht, M.B.; Roberts, C.D.; Schmidt, S.M., Eur. phys. J. C, 22, 341, (2001)
[43] A.V. Tarakanov, A.V. Reichel, S.A. Smolyansky, D.V. Vinnik, S.M. Schmidt, hep-ph/0212200.
[44] Nikishov, A.I., Sov. phys. JETP, 30, 660, (1970)
[45] Narozhny, N.B.; Nikishov, A.I., Sov. J. nucl. phys., 32, 596, (1970)
[46] Nikishov, A.I., Nucl. phys., B21, 346, (1970)
[47] Gavrilov, S.P.; Gitman, D.M., Phys. rev. D, 53, 7162, (1996)
[48] Gavrilov, S.P.; Gitman, D.M.; Tomazelli, J.L., Nucl. phys. B, 795, 645, (2007)
[49] Hallin, J.; Liljenberg, P., Phys. rev. D, 52, 1150, (1995)
[50] Heinz, U.W., AIP conf. proc., 739, 163, (2005)
[51] S. Mrówczyński, POS C POD2006 (2006) 042.
[52] Lappi, T.; McLerran, L., Nucl. phys. A, 772, 200, (2006)
[53] Kharzeev, D.; Tuchin, K., Nucl. phys. A, 753, 316, (2005)
[54] Kharzeev, D.; Levin, E.; Tuchin, K., Phys. rev. C, 75, 044903, (2007)
[55] Popov, V.S., Sov. phys. JETP, 34, 709, (1972)
[56] Kim, S.P.; Lee, H.K., Phys. rev. D, 76, 125002, (2007)
[57] Fulling, S.A., Phys. rev. D, 14, 1939, (1976)
[58] Ambjørn, J.; Wolfram, S., Ann. phys., 147, 33, (1983)
[59] Whittaker, E.T.; Watson, G.N., A course of modern analysis, (1973), Cambridge University Press Cambridge, MA · Zbl 0108.26903
[60] Abramowitz, M.; Stegun, I., Handbook of mathematical functions, (1965), Dover New York
[61] Fulling, S.A., Phys. rev. D, 7, 2850, (1973)
[62] Umezawa, H., Advanced field theory, (1993), American Institute of Physics Press New York
[63] Landau, L.D.; Lifshitz, E.M., Quantum mechanics: non-relativistic theory, (1977), Pergamon Press New York · Zbl 0178.57901
[64] Fulling, S.A., Gen. relat. gravit., 10, 807, (1979)
[65] Parker, L.; Fulling, S.A., Phys. rev. D, 9, 341, (1974)
[66] Fujii, H.; Itakura, K., Nucl. phys. A, 809, 88, (2008)
[67] Ambjørn, J.; Nielsen, N.K.; Olesen, P., Nucl. phys. B, 152, 75, (1979)
[68] Feshbach, H.; Villars, F., Rev. mod. phys., 30, 24, (1958)
[69] S.P. Gavrilov, D.M. Gitman, Phys. Rev. Lett. 101 (2008) 130403; Phys. Rev. D 78 (2008) 045017.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.