×

zbMATH — the first resource for mathematics

Heat transfer analysis of composite slabs using meshless element free Galerkin method. (English) Zbl 1168.80309
Summary: This paper deals with three dimensional heat transfer analysis of composite slabs using meshless element free Galerkin method. The element free Galerkin method (EFG) method utilizes moving least square (MLS) approximants to approximate the unknown function of temperature \(T(\mathbf x)\). These approximants are constructed by using a weight function, a basis function and a set of coefficients that depends on position. Penalty and Lagrange multiplier techniques have been used to enforce the essential boundary conditions. MATLAB codes have been developed to obtain the EFG results. Two new basis functions namely trigonometric and polynomial have been proposed. A comparison has been made among the results obtained using existing (linear) and proposed (trigonometric and polynomial) basis functions for three dimensional heat transfer in composite slabs. The effect of penalty parameter on EFG results has also been discussed. The results obtained by EFG method are compared with those obtained by the finite element method.

MSC:
80M25 Other numerical methods (thermodynamics) (MSC2010)
80A20 Heat and mass transfer, heat flow (MSC2010)
Software:
Matlab
PDF BibTeX Cite
Full Text: DOI
References:
[1] 1. Monaghan JJ. (1998). An introduction to SPH. Comput Phys Commun 48:89–96 · Zbl 0673.76089
[2] 2. Monaghan JJ. (1992). Smoothed particle hydrodynamics. Annu Rev Astron Astrophy 30:43–574
[3] 3. Nayroles B., Touzot G., Villon P. (1992). Generalizing the finite element method: diffuse approximation and diffuse elements. Comput Mech 10:307–318 · Zbl 0764.65068
[4] 4. Marechal Y., Coulomb JL., Meunier G. (1993). Use of diffuse element for electromagnetic field computations. IEEE Trans Magn 29:1475–1478
[5] 5. Nayroles B., Touzot BG., Villon P. (1994). Using the diffuse approximation for optimizing the location of anti-sound sources. J Sound Vib 1:1–21 · Zbl 1064.76608
[6] 6. Liu WK., Jun S., Zhang YF. (1995). Reproducing kernel particle methods. Int J Numer Meth Eng 20:1081–1106 · Zbl 0881.76072
[7] 7. Liu WK., Jun S., Li S., Adee J., Belytschko T. (1995). Reproducing kernel particle methods for structural dynamics. Int J Numer Meth Eng 38:1655–1679 · Zbl 0840.73078
[8] 8. Liu WK., Chen Y., Jun S., Chen JS., Belytschko T., Pan C., Uras RA., Chang CT. (1996). Overview and applications of the reproducing kernel particle methods. Arch Comput Meth Eng 33–80
[9] 9. Jun S., Liu WK., Belytschko T. (1998). Explicit reproducing kernel particle methods for large deformation problems. Int J Numer Meth Eng 41:137–166 · Zbl 0909.73088
[10] 10. Babuska I., Melenk JM. (1997). The partition of unity method. Int J Numer Meth Eng 40:727–758 · Zbl 0949.65117
[11] 11. Yagawa g., Yamada T. (1996). Free mesh method, a new meshless finite element method. Comput Mech 18:383–386 · Zbl 0894.73182
[12] 12. Belytschko T., Lu YY., Gu L. (1994). Element free Galerkin methods. Int J Numer Meth Eng 37:229–256 · Zbl 0796.73077
[13] 13. Lu YY., Belytschko T., Gu L. (1994). A new implementation of the element free Galerkin method. Comput Meth Appl Mech Eng 113:397–414 · Zbl 0847.73064
[14] 14. Belytschko T., Krongauz Y., Organ D., Fleming M., Krysl P. (1996). Meshless methods: an overview and recent developments. Comput Meth Appl Mech Eng 139:3–47 · Zbl 0891.73075
[15] 15. Dolbow J., Belytschko T. (1998). An introduction to programming the meshless element free Galerkin method. Arch Comput Meth Eng 5:207–241
[16] 16. Liu WK., Chen Y., Chang CT., Belytschko T. (1996). Advances in multiple scale kernel particle methods. Comput Mech 18:73–111 · Zbl 0868.73091
[17] 17. Krongauz Y., Belytschko T. (1997). A Petrov-Galerkin diffuse element method (PG-DEM) and its comparison to EFG. Comput Mech 19:327–333 · Zbl 1031.74527
[18] 18. Liu WK., Liu S., Belytschko T. (1997). Moving least square kernel Galerkin method (1) methodology and convergence. Comput Meth Appl Mech Eng 13:113–154 · Zbl 0883.65088
[19] 19. Liu WK., Hao S., Belytschko T., Li S., Chang CT. (1999). Multiple scale meshfree methods for damage fracture and localization. Comput Material Sci 16:197–205
[20] 20. Belytschko T., Krongauz Y., Dolbow J., Gerlach C. (1998). On the completeness of meshfree particle methods. Int J Numer Meth Eng 43:785–819 · Zbl 0939.74076
[21] 21. Belytschko T., Guo Y., Liu WK., Xiao SP. (2000). A unified stability analysis of meshless particle methods. Int J Numer Meth Eng 48:1359–1400 · Zbl 0972.74078
[22] 22. Zhu T., Zhang JD., Atluri SN. (1998). A meshless local boundary integral equation (LBIE) method for solving nonlinear problems. Comput Mech 22:174–186 · Zbl 0924.65105
[23] 23. Atluri SN., Zhu T. (1998). A new Meshless Local Petrov-Galerkin (MLPG) approach in computational mechanics. Comput Mech 22:117–127 · Zbl 0932.76067
[24] 24. Sukumar N., Moran B., Belytschko T. (1998). The natural element method in solid mechanics. Int J Numer Meth Eng 43:839–887 · Zbl 0940.74078
[25] 25. De S., Bathe KJ. (2000). The method of finite spheres. Comput Mech 25:329–345 · Zbl 0952.65091
[26] 26. Sukumar N., Moran B., Yu Semenov A., Belikov VV. (2001). Natural neighbor Galerkin methods. Int J Numer Meth Eng 50:1–27 · Zbl 1082.74554
[27] 27. Belytschko T., Gu L., Lu YY. (1994). Fracture and crack growth by element-free Galerkin methods. Model Simul Material Sci Eng 2:519–534
[28] 28. Sukumar N., Moran B., Black T., Belytschko T. (1997). An element-free Galerkin method for three-dimensional fracture mechanics. Comput Mech 20:170–175 · Zbl 0888.73066
[29] 29. Belytschko T., Lu YY., Gu L., Tabbara M. (1995). Element-free Galerkin methods for static and dynamic fracture. Int J Solid Struct 32:2547–2570 · Zbl 0918.73268
[30] 30. Belytschko T., Tabbara M. (1996). Dynamic fracture using element-free Galerkin methods. Int J Numer Meth Eng 39:923–938 · Zbl 0953.74077
[31] 31. Belytschko T., Organ D., Gerlach C. (2000). Element-free Galerkin methods for dynamic fracture in concrete. Comput Meth Appl Mech Eng 187:285–399 · Zbl 0962.74077
[32] 32. Lu YY., Belytschko T., Tabbara M. (1995). Element-free Galerkin methods for wave propagation and dynamic fracture. Comput Meth Appl Mech Eng 126:131–153 · Zbl 1067.74599
[33] 33. Belytschko T., Lu YY., Gu L. (1995). Crack propagation by element-free Galerkin methods. Eng Fract Mech 51(2):295–315
[34] 34. Krysl P., Belytschko T. (1999). The element free-Galerkin method for dynamic propagation of arbitrary 3-D cracks. Int J Numer Meth Eng 44:767–800 · Zbl 0953.74078
[35] 35. Krysl P., Belytschko T. (1996). Analysis of thin plates by element-free Galerkin method. Comput Mech 17:26–35 · Zbl 0841.73064
[36] 36. Krysl P., Belytschko T. (1996). Analysis of thin shells by element-free Galerkin method. Int J Solid Struct 33:3057–3080 · Zbl 0929.74126
[37] Xuan L., Zeng Z., Shanker B., Udpa L., A Meshless element-free Galerkin method in NDT applications. 28th Annual Review of Progress in Quantitative Nondestructive Evaluation, Maine USA, July 2001, Published in AIP conference Proceeding
[38] 38. Cingoski V., Miyamoto N., Yamashita H. (1998). Element-free Galerkin method for electromagnetic field computations. IEEE Trans Magn 34:3236–3239
[39] 39. Li G., Belytschko T. (2001). Element-free Galerkin method for contact problems in metal forming analysis. Eng Comput 18:62–78 · Zbl 0985.74080
[40] 40. Singh IV., Sandeep K., Prakash R. (2003). Heat transfer analysis of two-dimensional fins using meshless element-free Galerkin method. Numer Heat Tr-Part A 44:73–84
[41] 41. Singh IV., Sandeep K., Prakash R. (2004). Application of meshless element free Galerkin method in two-dimensional heat conduction problems. Comput Assist Mech Eng Sci 11:265–274 · Zbl 1101.80005
[42] 42. Singh IV., Sandeep K., Prakash R. (2002). The element free Galerkin method in three dimensional steady state heat conduction. Int J Comput Eng Sci 3(3):291–303
[43] 43. Lancaster P., Salkauskas K. (1981). Surfaces generated by moving least square methods. Math Comput 37:141–158 · Zbl 0469.41005
[44] 44. Singh IV. (2004). Application of meshless EFG method in fluid flow problems. ”Sadhana, Indian Academy of Science”. 29:285–296 · Zbl 1099.76518
[45] 45. Zhu T., Atluri SN. (1998). A modified collocation method and a penalty formulation for enforcing the essential boundary conditions in the element free Galerkin method. Comput Mech 21:211–222 · Zbl 0947.74080
[46] 46 Krongauz Y., Belytschko T. (1996). Enforcement of essential boundary conditions in meshless approximation using finite elements. Comput Meth Appl Mech Eng 131:1335–1345 · Zbl 0881.65098
[47] 47. Kaljevic I., Saigal S. (1997). An improved element free Galerkin formulation. Int J Numer Meth Eng 40:2953–2974 · Zbl 0895.73079
[48] 48. Rao BN., Rahman S. (2000). An efficient meshless method for fracture analysis of cracks. Comput Mech 26:398–408 · Zbl 0986.74078
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.