×

zbMATH — the first resource for mathematics

A numerical approach for arbitrary cracks in a fluid-saturated medium. (English) Zbl 1168.74447
Summary: A finite element method is proposed that can capture arbitrary discontinuities in a two-phase medium. The discontinuity is described in an exact manner by exploiting the partition-of-unity property of finite element shape functions. The fluid flow away from the discontinuity is modelled in a standard fashion using Darcy’s relation, while at the discontinuity a discrete analogon of Darcy’s relation is proposed. The results of this finite element model are independent of the original discretisation, as is demonstrated by an example of shear banding in a biaxial, plane-strain specimen.

MSC:
74R99 Fracture and damage
74F10 Fluid-solid interactions (including aero- and hydro-elasticity, porosity, etc.)
74S05 Finite element methods applied to problems in solid mechanics
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] de Borst R. (2004). Damage, material instabilities, and failure. In: Stein E., de Borst R., Hughes T.J.R. (eds) Encyclopedia of computational mechanics, Vol 2, Chapter 10. Wiley, Chichester
[2] Ngo D., Scordelis A.C. (1967). Finite element analysis of reinforced concrete beams. J Am Concrete Inst 64:152–163
[3] Ingraffea A.R., Saouma V. (1985). Numerical modelling of discrete crack propagation in reinforced and plain concrete. In: Sih G.C., de Tomaso A. (eds) Fracture Mechanics of Concrete. Martinus Nijhoff Publishers, Dordrecht, pp. 171–225
[4] Camacho G.T., Ortiz M. (1996). Computational modeling of impact damage in brittle materials. Int J Solids Struct 33:2899–2938 · Zbl 0929.74101 · doi:10.1016/0020-7683(95)00255-3
[5] Babuska I., Melenk J.M. (1997). The partition of unity method. Int J Num Meth Eng 40:727–758 · Zbl 0949.65117 · doi:10.1002/(SICI)1097-0207(19970228)40:4<727::AID-NME86>3.0.CO;2-N
[6] Belytschko T., Black T. (1999). Elastic crack growth in finite elements with minimal remeshing. Int J Num Meth Eng 45:601–620 · Zbl 0943.74061 · doi:10.1002/(SICI)1097-0207(19990620)45:5<601::AID-NME598>3.0.CO;2-S
[7] Moës N., Dolbow J., Belytschko T. (1999). A finite element method for crack growth without remeshing. Int J Num Meth Eng 46:131–150 · Zbl 0955.74066 · doi:10.1002/(SICI)1097-0207(19990910)46:1<131::AID-NME726>3.0.CO;2-J
[8] Wells G.N., Sluys L.J. (2001). Discontinuous analysis of softening solids under impact loading. Int J Num Anal Meth Geomech 25:691–709 · Zbl 1052.74564 · doi:10.1002/nag.148
[9] Wells G.N., Sluys L.J., de Borst R. (2002). Simulating the propagation of displacement discontinuities in a regularized strain–softening medium. Int J Num Meth Eng 53:1235–1256 · doi:10.1002/nme.375
[10] Wells G.N., de Borst R., Sluys L.J. (2002). A consistent geometrically non–linear approach for delamination. Int J Num Meth Eng 54:1333–1355 · Zbl 1086.74043 · doi:10.1002/nme.462
[11] Remmers J.J.C., de Borst R., Needleman A. (2003). A cohesive segments method for the simulation of crack growth. Comput Mech 31:69–77 · Zbl 1038.74679 · doi:10.1007/s00466-002-0394-z
[12] Samaniego E., Belytschko T. (2005). Continuum–discontinuum modelling of shear bands. Int J Num Meth Eng 62:1857–1872 · Zbl 1121.74476 · doi:10.1002/nme.1256
[13] Réthoré J., Gravouil A., Combescure A. (2005). An energy-conserving scheme for dynamic crack growth using the extended finite element method. Int J Num Meth Eng 63:631–659 · Zbl 1122.74519 · doi:10.1002/nme.1283
[14] Réthoré J., Gravouil A., Combescure A. (2005). A combined space–time extended finite element method. Int J Num Meth Eng 64:260–284 · Zbl 1138.74403 · doi:10.1002/nme.1368
[15] Areias, P.M.A., Belytschko, T.: Twoscale shear band evolution by local partition of unity. Int J Num Meth Eng doi: 10.1002/nme.1589 (2006) · Zbl 1110.74841
[16] Jouanna P., Abellan M.A. (1995). Generalized approach to heterogeneous media. In: Gens A., Jouanna P., Schrefler B. (eds) Modern Issues in non-saturated soils. Springer-Verlag, Wien, New York, pp. 1–128
[17] Lewis R.W., Schrefler B.A. (1998). The finite element method in the static and dynamic deformation and consolidation of porous media, 2nd Edn. John Wiley & Sons, Chichester · Zbl 0935.74004
[18] Armero F., Callari C. (1999). An analysis of strong discontinuities in a saturated poro-plastic solid. Int J Num Meth Eng 46:1673–1698 · Zbl 0971.74029 · doi:10.1002/(SICI)1097-0207(19991210)46:10<1673::AID-NME719>3.0.CO;2-S
[19] Larsson J., Larsson R. (2000). Localization analysis of a fluidsaturated elastoplastic porous medium using regularized discontinuities. Mech Coh-frict Mat 5:565–582 · Zbl 0995.74069 · doi:10.1002/1099-1484(200010)5:7<565::AID-CFM107>3.0.CO;2-W
[20] Feenstra P.H., de Borst R. (1996). A composite plasticity model for concrete. Int J Solids Struct 33:707–730 · Zbl 0900.73455 · doi:10.1016/0020-7683(95)00060-N
[21] Abellan, M.A., de Borst, R.: Wave propagation and localisation in a softening two-phase medium. Comp Meth Appl Mech Eng doi: 10.1016/j.cma.2005.05.056 (2006) · Zbl 1118.74013
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.