×

zbMATH — the first resource for mathematics

Mathematical modeling of toxic pollutants dispersion from large tank fires and assessment of acute effects for fire fighters. (English) Zbl 1167.80404
Int. J. Heat Mass Transfer 52, No. 17-18, 4021-4030 (2009); corrigendum ibid. 52, No. 25-26, 6059 (2009).
Summary: The paper presents a Computational Fluid Dynamics (CFD) approach to major - hazard studies, by applying a finite-domain technique to predict the dispersion of combustion products (CO, SO\(_2\), smoke, Volatile Organic Compounds, VOC, Polycyclic Aromatic Hydrocarbons, PAH, etc.) from fuel-tank fires, as well as the toxic plume rise.
Furthermore, a methodology is presented for the identification of risk zones for the first respondents (fire fighters). Numerical simulations were performed with the use of the SIMPLEST algorithm, a second-order accurate MUSCL scheme with deferred correction for the convective terms in the momentum equations, CUPID for the convective terms in the scalar conservation equations, and a modified, RNG k-\(\epsilon \), two-equation turbulence model. Radiation was computed by a discrete transfer model. Various scenarios were examined and the results are presented and discussed.

MSC:
80A25 Combustion
76F60 \(k\)-\(\varepsilon\) modeling in turbulence
80-04 Software, source code, etc. for problems pertaining to classical thermodynamics
76-04 Software, source code, etc. for problems pertaining to fluid mechanics
76R10 Free convection
76F25 Turbulent transport, mixing
78A40 Waves and radiation in optics and electromagnetic theory
76M20 Finite difference methods applied to problems in fluid mechanics
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Beck, U.: The risk society, (1992) · Zbl 0763.90055
[2] Chang, L.; Lin, C. C.: A study of storage tanks accidents, J. loss prev. Process ind. 19, 51-59 (2006)
[3] Ghoniem, A. F.; Zhang, X.; Knio, O.; Baum, H. R.; Rehm, R. G.: Dispersion and deposition of smoke plumes generated in massive fires, J. hazard. Mater. 33, 275-293 (1993)
[4] Ghoniem, A. F.; Zhang, X.: A computational model for the rise and dispersion of wind-blown, buoyancy driven plumes, part I neutrally stratified atmosphere, Atmos. environ. 27, 2295-2311 (1993)
[5] Mcgrattan, K. B.; Baum, H. R.; Rehm, R. G.: Numerical simulation of smoke plumes from large oil fires, Atmos. environ. 30, 4125-4136 (1996)
[6] G. Miles, M. Cox, M.N. Christolis, C.A. Christidou, A.G. Boudouvis, N.C. Markatos, Modelling the environmental consequences of fires in warehouses, in: T. Kashiwagi (Ed.), Proceedings of the Forth International Symposium on Fire Safety Science, Ottawa, Canada, 1994, pp. 1221 – 1232.
[7] M.N. Christolis, C.A. Christidou, A.G. Boudouvis, N.C. Markatos, Modelling pollutants dispersion around buildings on fire, in: H. Power (Ed.), Proceedings of the International Conference on Air Pollution, Porto Carras, Greece, 1995, pp. 85 – 92.
[8] G.M. Sideris, M.N. Christolis, N.C. Markatos, Numerical simulation of pollutants dispersion around warehouses on fire, in: D.T. Tsahalis (Ed.), Proceedings of the First International Conference, From Scientific Computing to Computational Engineering, Athens, Greece, 2004.
[9] Kefalas, D. A.; Christolis, M. N.; Nivolianitou, Z.; Markatos, N. C.: Consequence analysis of an open fire incident in a pesticide storage plant, J. loss prev. Process ind. 19, 78-88 (2006)
[10] C.D. Argyropoulos, M.N. Christolis, N.C. Markatos, Z. Nivolianitou, Assessment of acute effects for fire-fighters during a fuel-tank fire, in: Proceedings of the 4th International Conference on Prevention of Occupational Accident in a Changing Work Environment, WOS 2008, 30 September – 3 October 2008, Crete, Greece. · Zbl 1167.80404
[11] Markatos, N. C.: Mathematical modelling of single- and two-phase flow problems in the process industries, Oil & gas sci. Technol. – rev. IFP 48, 631-662 (1993)
[12] Anderson, W. K.; Thomas, J.; Van Leer, B.: Comparison of finite volume flux vector splittings for the Euler equations, Aiaa j. 24, 1453 (1986)
[13] Patel, M. K.; Cross, M.; Markatos, N. C.: An assessment of flow oriented schemes for reducing false diffusion, Int. J. Numer. meth. Eng. 26, 2279 (1988) · Zbl 0664.76117 · doi:10.1002/nme.1620261011
[14] D.B. Spalding, Mathematical modelling of fluid-mechanics, heat-transfer and chemical-reaction processes, A Lecture Course, CFDU Report, HTS/80/1, Imperial College, London, 1980.
[15] Markatos, N. C.; Pericleous, K. A.: Laminar and turbulent natural convection in an enclosed cavity, Int. J. Heat mass transfer 27, No. 5, 755-772 (1984) · Zbl 0542.76112 · doi:10.1016/0017-9310(84)90145-5
[16] Yakhot, V.; Orszag, S. A.: Renormalization group analysis of turbulence I. Basic theory, J. sci. Comput. 1, 3-51 (1986) · Zbl 0648.76040 · doi:10.1007/BF01061452
[17] R. Siegel, J.R. Howell, Thermal radiation heat transfer, 4th ed., Hemisphere, Washington, 2002. · Zbl 0952.76535
[18] F.C. Lockwood, N.G. Shah, A new radiation solution method for incorporation in general combustion prediction procedures, in: Proceedings of the Eighteenth Symposium (Inter.) on Combustion, The Combustion Institute, Pittsburgh, 1981, pp. 1405 – 1416.
[19] Kim, H. M.; Patel, V. C.: Test of turbulence models for wind flow over terrain with separation and recirculation, Bound. layer meteorol. 94, 5-21 (2000)
[20] Tennekes, H.: The logarithmic wind profile, J. atmos. Sci. 30, 234-238 (1973)
[21] Huser, A.; Nilsen, P. J.; Sketun, H.: Application of k &z.epsiv; model to the stable ABL: pollution in complex terrain, J. wind eng. Ind. aerodyn. 67 and 68, 425-436 (1997)
[22] Launder, B. E.; Spalding, D. B.: The numerical computation of turbulent flows, Comput. methods appl. Mech. eng. 3, 269-289 (1974) · Zbl 0277.76049 · doi:10.1016/0045-7825(74)90029-2
[23] Babrauskas, V.: Estimating large pool fire burning rates, Fire technol. 19, 251-261 (1983)
[24] K.A. Notarianni, D.D. Evans, W.D. Walton, D. Madrzykowski, J.R. Lawson, Smoke production from large oil pool fires, Interflam ’93, Fire Safety, in: C.A. Franks (Ed.), 6th Int. Fire Conference, Oxford, England; Interscience Communications Ltd., London,, 1993, pp. 111 – 119.
[25] Koseki, H.; Iwata, Y.; Natsume, Y.; Takahashi, T.; Hirano, T.: Tomakomai large scale crude oil fire experiments, Fire technol. 36, 24-38 (2000)
[26] Evans, D. D.; Mulholland, G. W.; Baum, H. R.; Walton, W. D.; Mcgrattan, K. B.: In situ burning of oil spills, J. res. Natl. inst. Stand. technol. 106, 231-278 (2001)
[27] W.D. Walton, W.H. Twilley, A.D. Putorti, R.R. Hiltabrand, Smoke measurements using an advanced helicopter transported sampling package with radio telemetry, in: Proceedings of the 18th Arctic and Marine Oilspill Program Technical Seminar, Environment Canada, Ottawa, Ontario, 1995, pp. 1053 – 1074.
[28] Booher, L. E.; Janke, B.: Air emissions from petroleum hydrocarbon fires during controlled burning, Am. ind. Hyg. assoc. J. 58, 359-365 (1997)
[29] Lemieux, P. M.; Lutes, C. C.; Santoianni, D. A.: Emissions of organic air toxics from open burning: a comprehensive review, Progress energy combust. Sci. 30, 1-32 (2004)
[30] D.D. Evans, Combustion of oil spills on water (OCS Study MMS 88-0057) Environment Canada, Reston, VA, 1991, pp. 169 – 179.
[31] Patankar, S. V.; Spalding, D. B.: A calculation procedure for heat, mats and momentum transfer in three-dimensional parabolic flows, Int. J. Heat mass transfer 15, 1787 (1992) · Zbl 0246.76080 · doi:10.1016/0017-9310(72)90054-3
[32] Spalding, D. B.: A general purpose computer program for multi-dimensional one- and two-phase flow in mathematics and computers in simulation, A general purpose computer program for multi-dimensional one- and two-phase flow in mathematics and computers in simulation (1981)
[33] Van Leer, B.: Towards the ultimate conservative difference scheme. A second order sequel to Godunov’s method, J. comp. Phys. 32, 101 (1979) · Zbl 1364.65223
[34] Spalding, D. B.: Novel finite-difference formulation for differential expressions involving both first and second derivatives, Int. J. Numer. methods eng. 4, No. 4, 551-559 (1972)
[35] K.B. McGrattan, H.R. Baum, A. Hamins, Thermal radiation from large pool fires, NISTIR 6546, National Institute of Standards and Technology, U.S. Department of Commerce, Washington, DC, 2000.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.