zbMATH — the first resource for mathematics

Numerical investigation of heat and fluid flow across a rotating circular cylinder maintained at constant temperature in 2-D laminar flow regime. (English) Zbl 1167.80357
Summary: Forced convection heat transfer across a circular cylinder rotating with a constant non-dimensional rotation rate \((\alpha )\) varying from 0 to 6 are investigated for Reynolds numbers of 20-160 and a Prandtl number of 0.7. Flow transitions is reported here for a wider range of Reynolds number and rotation rates. Heat transfer visualization technique using heatlines is implemented here, probably for the first time, in finite volume framework for the unsteady heat transfer problem in complex domain and used for heat flow analysis. Rotation can be used as a drag reduction and heat transfer suppression technique.

80A20 Heat and mass transfer, heat flow (MSC2010)
76R05 Forced convection
76U05 General theory of rotating fluids
76M12 Finite volume methods applied to problems in fluid mechanics
80M25 Other numerical methods (thermodynamics) (MSC2010)
Full Text: DOI
[1] Zdravkovich, M. M.: Flow around circular cylinders, Flow around circular cylinders 1 (1997) · Zbl 0882.76004
[2] Barkley, D.; Henderson, D.: Three dimensional Floquet stability analysis of the wake of the circular cylinder, J. fluid mech. 322, 215-241 (1996) · Zbl 0882.76028
[3] Williamson, C. H. K.: Vortex dynamics in the cylinder wake, Ann. rev. Fluid mech. 28, 477-539 (1996)
[4] Baranyi, L.: Computation of unsteady momentum and heat transfer from a fixed circular cylinder in laminar flow, J. comp. App. mech. 4, 13-25 (2003) · Zbl 1026.80001
[5] Townsend, P.: A numerical simulation of Newtonian and visco-elastic flow past stationary and rotating cylinders, J. non-Newtonian fluid mech. 6, 219-243 (1980) · Zbl 0421.76002
[6] Badr, H. M.; Dennis, S. C. R.; Young, P. J. S.: Steady and unsteady flow past a rotating circular cylinder at low Reynolds numbers, Comput. fluids 4, 579-609 (1989) · Zbl 0673.76117
[7] Ingham, D. B.; Tang, T.: A numerical investigation into the steady flow past a rotating circular cylinder at low and intermediate Reynolds numbers, J. comp. Phys. 87, 91-107 (1990) · Zbl 0687.76037
[8] Tang, T.; Ingham, D. B.: On steady flow past a rotating circular cylinder at Reynolds numbers 60 and 100, Comput. fluids 19, 217-230 (1991) · Zbl 0722.76089
[9] Kang, S.; Choi, H.; Lee, S.: Laminar flow past a rotating circular cylinder, Phys. fluids 11, 3312-3321 (1999) · Zbl 1149.76423
[10] Stojkovic, D.; Breuer, M.; Durst, F.: Effect of high rotation rates on the laminar flow around a circular cylinder, Phys. fluids 14, 3160-3178 (2002) · Zbl 1185.76357
[11] Stojkovic, D.; Schon, P.; Breuer, M.; Durst, F.: On the new vortex shedding mode past a rotating circular cylinder, Phys. fluids 15, 1257-1260 (2003) · Zbl 1186.76500
[12] Mittal, S.; Kumar, B.: Flow past a rotating cylinder, J. fluid mech. 476, 303-334 (2003) · Zbl 1163.76442
[13] Badr, H. M.; Dennis, S. C. R.: Laminar forced convection from a rotating cylinder, Int. J. Heat mass transfer 28, 253-264 (1985) · Zbl 0559.76082
[14] Hu, G.; Sun, D.; Yin, X.; Tong, B.: Hopf bifurcation in wakes behind a rotating and translating circular cylinder, Phys. fluids 8, 1972-1974 (1996) · Zbl 1027.76554
[15] Kendoush, A. A.: An approximate solution of the convection heat transfer from an isothermal rotating cylinder, Int. J. Heat fluid flow 17, 439-441 (1996)
[16] Kimura, S.; Bejan, A.: The ’heatline’ visualization of convective heat transfer, ASME J. Heat transfer 105, 916-919 (1983)
[17] Sharma, A.; Eswaran, V.: A finite volume method, Computational fluid flow and heat transfer, 445-483 (2003)
[18] Paramane, S. B.; Sharma, A.: Consistent implementation and comparison of FOU, CD, SOU and QUICK convection schemes on square, skew, trapezoidal, and triangular lid driven cavity flow, Numer. heat transfer B 54, 84-102 (2008)
[19] Barnes, F. H.: Vortex shedding in the wake of a rotating circular cylinder at low Reynolds numbers, J. phys. 33, L141-L144 (2000)
[20] Bello-Ochende, F. L.: A heat function formulation for thermal convection in a square cavity, Comput. meth. Appl. mech. Eng. 68, 141-149 (1988) · Zbl 0628.76087
[21] Deng, Q. H.; Tang, G. F.: Numerical visualization of mass and heat transport for conjugate natural convection/heat conduction by streamline and heatline, Int. J. Heat mass transfer 45, 2373-2385 (2002) · Zbl 1072.76618
[22] Costa, V. A. F.: Bejan’s heatline and massline for convection visualization and analysis, ASME J. Heat transfer 59, 126-145 (2006)
[23] Dalal, A.; Das, M. K.: Heatline method for the visualization of natural convection in a complicated cavity, Int. J. Heat mass transfer 51, 263-272 (2008) · Zbl 1140.80322
[24] Perry, A. E.; Chong, M. S.; Lim, T. T.: The vortex shedding behind two-dimensional bluff bodies, J. fluid mech. 116, 77-90 (1982)
[25] Eaton, B. E.: Analysis of laminar vortex shedding behind a circular cylinder by computer-aided flow visualization, J. fluid mech. 180, 117-145 (1987)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.