×

zbMATH — the first resource for mathematics

Local and global instabilities of flow in a flexible-walled channel. (English) Zbl 1167.76329
Summary: We consider laminar high-Reynolds-number flow through a long finite-length planar channel, where a segment of one wall is replaced by a massless membrane held under longitudinal tension. The flow is driven by a fixed pressure difference across the channel and is described using an integral form of the unsteady boundary-layer equations. The basic flow state, for which the channel has uniform width, exhibits static and oscillatory global instabilities, having distinct modal forms. In contrast, the corresponding local problem (neglecting boundary conditions associated with the rigid parts of the system) is found to be convectively, but not absolutely, unstable to small-amplitude disturbances in the absence of wall damping. We show how amplification of the primary global oscillatory instability can arise entirely from wave reflections with the rigid parts of the system, involving interacting travelling-wave flutter and static-divergence modes that are convectively stable; alteration of the mean flow by oscillations makes the onset of this primary instability subcritical. We also show how distinct mechanisms of energy transfer differentiate the primary global mode from other modes of oscillatory instability.

MSC:
76E15 Absolute and convective instability and stability in hydrodynamic stability
76E05 Parallel shear flows in hydrodynamic stability
74F10 Fluid-solid interactions (including aero- and hydro-elasticity, porosity, etc.)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Heil, M.; Jensen, O.E., Flows in deformable tubes and channels, (), 15-49 · Zbl 1077.76075
[2] Grotberg, J.B.; Jensen, O.E., Biofluid mechanics in flexible tubes, Annu. rev. fluid mech., 36, 121-147, (2004) · Zbl 1081.76063
[3] Bertram, C.D.; Raymond, C.J.; Pedley, T.J., Mapping of instabilities for flow through collapsed tubes of different length, J. fluids struct., 4, 125-154, (1990)
[4] Bertram, C.D.; Raymond, C.J.; Pedley, T.J., Application of non-linear dynamics concepts to the analysis of self-excited oscillations of a collapsible tube conveying a fluid, J. fluids struct., 5, 391-426, (1991)
[5] Davies, C.; Carpenter, P.W., Instabilities in a plane channel flow between compliant walls, J. fluid mech., 352, 205-243, (1997) · Zbl 0903.76029
[6] Davies, C., Convective and absolute instabilities of flow over compliant walls, (), 69-93 · Zbl 1089.76020
[7] Pedley, T.J., Longitudinal tension variation in a collapsible channel: a new mechanism for the breakdown of steady flow, Trans. ASME J. biomech. eng., 114, 60-67, (1992)
[8] Bertram, C.D.; Pedley, T.J., A mathematical model of unsteady collapsible tube behaviour, J. biomech., 19, 39-50, (1982)
[9] Armitstead, J.P.; Bertram, C.D.; Jensen, O.E., A study of the bifurcation behaviour of a model of flow through a collapsible tube, Bull. math. biol., 58, 611-641, (1996) · Zbl 0859.92005
[10] Cancelli, C.; Pedley, T.J., A separated-flow model for collapsible-tube oscillations, J. fluid mech., 157, 375-404, (1985)
[11] Jensen, O.E.; Pedley, T.J., The existence of steady flow in a collapsed tube, J. fluid mech., 206, 339-374, (1989) · Zbl 0678.76030
[12] Jensen, O.E., Instabilities of flow in a collapsed tube, J. fluid mech., 220, 623-659, (1990) · Zbl 0708.76056
[13] Jensen, O.E., Chaotic oscillations in a simple collapsible tube model, Trans. ASME J. biomech. eng., 114, 55-59, (1992)
[14] Matsuzaki, Y.; Matsumoto, T., Flow in a two-dimensional channel with rigid inlet and outlet, Trans. ASME J. biomech. eng., 111, 180-184, (1989)
[15] Hayashi, S.; Hayase, T.; Kawamura, H., Numerical analysis for stability and self-excited oscillation in collapsible tube flow, Trans. ASME J. biomech. eng., 120, 468-475, (1998)
[16] Hayashi, S.; Hayase, T.; Miura, Y.; Iimura, I., Dynamic characteristics of collapsible tube flow, JSME int. J. ser. C, 42, 689-696, (1999)
[17] Luo, X.-Y.; Pedley, T.J., A numerical simulation of unsteady flow in a two-dimensional collapsible channel, J. fluid mech., 314, 191-225, (1996) · Zbl 0875.76264
[18] Luo, X.-Y.; Cai, Z.X.; Li, W.G.; Pedley, T.J., The cascade structure of linear instability in collapsible channel flows, J. fluid mech., 600, 45-76, (2008) · Zbl 1151.76455
[19] Jensen, O.E.; Heil, M., High-frequency self-excited oscillations in a collapsible-channel flow, J. fluid mech., 481, 235-268, (2003) · Zbl 1049.76015
[20] Heil, M.; Waters, S.L., Transverse flows in rapidly oscillating elastic cylindrical shells, J. fluid mech., 547, 185-214, (2006) · Zbl 1082.74015
[21] Heil, M.; Waters, S.L., How rapidly oscillating collapsible tubes extract energy from a viscous Mean flow, J. fluid mech., 601, 199-227, (2008) · Zbl 1151.76418
[22] R.J. Whittaker, S.L. Waters, O.E. Jensen, J.W. Boyle, M. Heil, The energetics of flow through a rapidly oscillating flexible tube: Part I: General theory, 2008, submitted for publication · Zbl 1189.76133
[23] R.J. Whittaker, S.L. Waters, O.E. Jensen, J.W. Boyle, M. Heil, The energetics of flow through a rapidly oscillating flexible tube: Part II: Application to an elliptical tube, 2008, submitted for publication · Zbl 1189.76132
[24] Hazel, A.L.; Heil, M., Steady finite-Reynolds-number flows in three-dimensional collapsible tubes, J. fluid mech., 486, 79-103, (2003) · Zbl 1070.76011
[25] Marzo, A.; Luo, X.Y.; Bertram, C.D., Three-dimensional collapse and steady flow in thick-walled flexible tubes, J. fluids struct., 20, 817-835, (2005)
[26] Heil, M.; Hazel, A.L.; Boyle, J., Solvers for large-displacement fluid – structure interaction problems: segregated versus monolithic approaches, Comput. mech., 43, 91-101, (2008) · Zbl 1309.76126
[27] Luo, X.-Y.; Pedley, T.J., A numerical simulation of steady flow in a 2-D collapsible channel, J. fluids struct., 9, 149-197, (1995)
[28] Luo, X.-Y.; Pedley, T.J., The effects of wall inertia on flow in a two-dimensional collapsible channel, J. fluid mech., 363, 253-280, (1998) · Zbl 0924.76023
[29] Salamon, T.R.; Armstrong, R.C.; Brown, R.A., Traveling waves on vertical films: numerical analysis using the finite element method, Phys. fluids, 6, 2202-2220, (1994) · Zbl 0844.76024
[30] Huerre, P., Spatio-temporal instabilities in open and closed flows, (), 141-177 · Zbl 0631.76042
[31] Huerre, P.; Rossi, M., Hydrodynamic instabilities in open flows, (), 81-294 · Zbl 0904.76021
[32] Benjamin, T.B., Effects of a flexible boundary on hydrodynamic stability, J. fluid mech., 9, 513-532, (1960) · Zbl 0094.40304
[33] Landahl, M.T., On the stability of a laminar incompressible boundary layer over a flexible surface, J. fluid mech., 13, 609-632, (1962) · Zbl 0104.42801
[34] Benjamin, T.B., The threefold classification of unstable disturbances in flexible surfaces bounding inviscid flows, J. fluid mech., 16, 436-450, (1963) · Zbl 0116.19103
[35] Shkadov, V.Ya., Wave conditions in the flow of thin layer of a viscous liquid under the action of gravity, Izv. akad. nauk SSSR, mekh. zhidk. gaza, 1, 43-50, (1967)
[36] Shkadov, V.Ya., Theory of wave flows of thin layer of a viscous liquid, Izv. akad. nauk SSSR, mekh. zhidk. gaza, 2, 20-26, (1968)
[37] Trifonov, Y.Y.; Tsvelodub, O.Y., Nonlinear waves on the surface of a falling liquid film. part 1. waves of the first family and their stability, J. fluid mech., 229, 531-554, (1991) · Zbl 0850.76157
[38] Trifonov, Y.Y.; Tsvelodub, O.Y., Nonlinear waves on the surface of a falling liquid film. part 2. bifurcations of the first-family waves and other types of non-linear waves, J. fluid mech., 244, 149-169, (1992)
[39] Scheid, B.; Ruyer-Quil, C.; Manneville, P., Wave patterns in film flows: modelling and three dimensional waves, J. fluid mech., 562, 183-222, (2006) · Zbl 1157.76307
[40] Bessems, D.; Rutten, M.; van de Vosse, F., A wave propagation model of blood flow in large vessels using an approximate velocity profile function, J. fluid mech., 580, 145-168, (2007) · Zbl 1175.76171
[41] Brevdo, L.; Laure, P.; Dias, F.; Bridges, T.J., Linear pulse structure and signalling in a film flow on an inclined plane, J. fluid mech., 396, 37-71, (1999) · Zbl 0982.76037
[42] Guneratne, J.C.; Pedley, T.J., High-Reynolds-number steady flow in a collapsible channel, J. fluid mech., 569, 151-184, (2006) · Zbl 1177.76083
[43] Guckenheimer, J.; Holmes, P., Nonlinear oscillations, dynamical systems and bifurcations of vector fields, (1983), Springer New York · Zbl 0515.34001
[44] Ashpis, D.E.; Reshotko, E., The vibrating ribbon problem revisited, J. fluid mech., 213, 531-547, (1990) · Zbl 0699.76062
[45] Doaré, O.; de Langre, E., The role of boundary conditions in the instability of one-dimensional systems, Eur. J. mech. B/fluids, 25, 948-959, (2006) · Zbl 1106.76030
[46] Peake, N., On the unsteady motion of a long fluid-loaded elastic plate with Mean flow, J. fluid mech., 507, 335-366, (2004) · Zbl 1065.74024
[47] Carpenter, P.W.; Garrad, A.D., The hydrodynamic stability of flow over kramer-type compliant surfaces. part 1. tollmien – schlichting instabilities, J. fluid mech., 155, 465-510, (1985) · Zbl 0596.76053
[48] Carpenter, P.W.; Garrad, A.D., The hydrodynamic stability of flow over kramer-type compliant surfaces. part 2. flow-induced surface instabilities, J. fluid mech., 170, 199-232, (1986) · Zbl 0634.76045
[49] Gallaire, F.; Chomaz, J.-M., The role of boundary conditions in a simple model of incipient vortex breakdown, Phys. fluids, 16, 2, 274-286, (2004) · Zbl 1186.76188
[50] Serre, D., Matrices: theory and applications, (2002), Springer New York
[51] Wiplier, O.; Ehrenstein, U., On the absolute instability in a boundary layer with compliant coatings, Eur. J. mech. B/fluids, 127-144, (2001) · Zbl 0983.76018
[52] Doaré, O.; de Langre, E., Local and global stability of fluid-conveying pipes on elastic foundations, J. fluids struct., 16, 1, 1-14, (2002)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.