×

zbMATH — the first resource for mathematics

Material characterization by dual sharp indenters. (English) Zbl 1167.74517
Summary: In a recent study, the author demonstrated that the yield strength \(Y\) can be replaced by the loading curvature \(C\) and hence the reduced elastic modulus-loading curvature ratio \(E^*/C\) and strain hardening exponent \(n\) can be used to govern characteristic parameters of indentation load-depth curves. Extending Le’s approach and regarding dimensional analysis, it is found that \(C/y\) and \(E^*/Y\) can be used to investigate fundamental issues in instrumented sharp indentation. Based on extensive finite element analysis, a set of dimensionless functions are constructed for cone indenters of half included angles of \(60^\circ \) and \(70.3^\circ \). Dimensionless relationships with respect to dual indenters are further explored. Several features of hardness are also considered. An inverse analysis procedure is suggested to estimate material properties, giving good inverse results for experimental data from the literature and representative materials. Sensitivity of inverse solution are studied and discussed. The results show that the proposed dual indenter method is quite robust and can be applied to a wide range of materials.

MSC:
74M15 Contact in solid mechanics
74G75 Inverse problems in equilibrium solid mechanics
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Alkorta, J.; Martinez-Esnaola, J. M.; Sevillano, J. Gil: Absence of one-to-one correspondence between elastoplastic properties and sharp-indentation load-penetration data, Journal of materials research 20, No. 2, 432-437 (2005)
[2] Alkorta, J.; Martinez-Esnaola, J. M.; Sevillano, J. Gil: Comments on ”comments on the determination of mechanical properties from the energy dissipated during indentation” by J. Malzbender [J. Mater. res. 20, 1090 (2005)], Journal of materials research 21, No. 1, 302-306 (2006)
[3] Atkins, A. G.; Tabor, D.: Plastic indentation in metals with cones, Journal of mechanics and physics of solids 13, 149-164 (1965)
[4] Bucaille, J. L.; Stauss, S.; Felder, E.; Michler, J.: Determination of plastic properties of metals by instrumented indentation using different sharp indenters, Acta materialia 51, 1663-1678 (2003)
[5] Cao, Y. P.; Qian, X. Q.; Lu, J.; Yao, Z. H.: An energy-based method to extract plastic properties of metal materials from conical indentation tests, Journal of materials research 20, No. 5, 1194-1206 (2005)
[6] Cao, Y.; Qian, X.; Huber, N.: Spherical indentation into elastoplastic materials: indentation-response based definitions of the representative strain, Materials science and engineering A 454 – 455, 1-13 (2007)
[7] Capehart, T. W.; Cheng, Y. T.: Determining constitutive models from conical indentation: sensitivity analysis, Journal of material research 18, No. 4, 827-832 (2003)
[8] Chen, X.; Ogasawara, N.; Zhao, M.; Chiba, N.: On the uniqueness of measuring elastoplastic properties from indentation: the indistinguishable mystical materials, Journal of the mechanics and physics of solids 55, 1618-1660 (2007) · Zbl 1176.74029 · doi:10.1016/j.jmps.2007.01.010
[9] Cheng, Y. T.; Cheng, C. M.: Can stress – strain relationships be obtained from indentation curves using conical and pyramidal indenters?, Journal of material research 14, No. 9, 3493-3496 (1999)
[10] Cheng, Y. T.; Cheng, C. M.: Scaling, dimensional analysis, and indentation measurements, Materials science and engineering R 44, No. 4-5, 91-149 (2004)
[11] Cheng, Y. T.; Li, Z.; Cheng, C. M.: Scaling relationships for indentation measurements, Philosophical magazine A 82, No. 10, 1821-1829 (2002)
[12] Chollacoop, N.; Dao, M.; Suresh, S.: Depth-sensing instrumented indentation with dual sharp indenters, Acta materialia 51, 3713-3729 (2003)
[13] Dao, M.; Chollacoop, N.; Van Vliet, K. J.; Venkatesh, T. A.; Suresh, S.: Computational modeling of the forward and reverse problems in instrumented sharp indentation, Acta materialia 49, No. 19, 3899-3918 (2001)
[14] Dicarlo, A.; Yang, H. T. Y.; Chandrasekar, S.: Prediction of stress – strain relation using cone indentation: effect of friction, International journal for numerical methods in engineering 60, No. 3, 661-674 (2004) · Zbl 1098.74688 · doi:10.1002/nme.979
[15] Futakawa, M.; Wakui, T.; Tanabe, Y.; Ioka, I.: Identification of the constitutive equation by the indentation technique using plural indenters with different apex angles, Journal of materials research 16, 2283-2292 (2001)
[16] Hay, J. C.; Bolshakov, A.; Pharr, G. M.: A critical examination of the fundamental relations used in the analysis of nanoindentation data, Journal of materials research 14, 2296-2305 (1999)
[17] Johnson, K. L.: Contact mechanics, (1985) · Zbl 0599.73108
[18] Joslin, D. L.; Oliver, W. C.: A new method for analyzing data from continuous depth-sensing microindentation tests, Journal of materials research 5, 123-126 (1990)
[19] Lan, H.; Venkatesh, T. A.: Determination of the elastic and plastic properties of materials through instrumented indentation with reduced sensitivity, Acta materialia 55, 2025-2041 (2007)
[20] Le, M. -Q.: A computational study on the instrumented sharp indentations with dual indenters, International journal of solids and structures 45, No. 10, 2818-2835 (2008) · Zbl 1169.74507 · doi:10.1016/j.ijsolstr.2007.12.022
[21] Luo, J.; Lin, J.: A study on the determination of plastic properties of metals by instrumented indentation using two sharp indenters, International journal of solids and structures 44, No. 18-19, 5803-5817 (2007) · Zbl 1178.74070 · doi:10.1016/j.ijsolstr.2007.01.029
[22] Luo, J.; Lin, J.; Dean, T. A.: A study on the determination of mechanical properties of a power-law material by its indentation force-depth curve, Philosophical magazine 86, No. 19, 2881-2905 (2006)
[23] Mata, M.; Alcalá, J.: The role of friction on sharp indentation, Journal of the mechanics and physics of solids 52, No. 1, 145-165 (2004) · Zbl 1045.74572 · doi:10.1016/S0022-5096(03)00075-9
[24] Ogasawara, N.; Chiba, N.; Chen, X.: Representative strain of indentation analysis, Journal of materials research 20, 2225-2234 (2005)
[25] Ogasawara, N.; Chiba, N.; Chen, X.: Limit analysis-based approach to determine the material plastic properties with conical indentation, Journal of materials research 21, 947-958 (2006)
[26] Oliver, W. C.; Pharr, G. M.: Review: measurement of hardness and elastic modulus by instrumented indentation. Advances in understanding and refinements to methodology, Journal of materials research 19, No. 1, 3-20 (2004)
[27] Stilwell, N. A.; Tabor, D.: Elastic recovery of conical indentations, Proceedings of the physical society 78, No. 1,2, 169-179 (1961)
[28] Swaddiwudhipong, S.; Tho, K. K.; Liu, Z. S.; Zeng, K.: Material characterization based on dual indenters, International journal of solids and structures 42, 69-83 (2005) · Zbl 1093.74517 · doi:10.1016/j.ijsolstr.2004.07.027
[29] Tho, K. K.; Swaddiwudhipong, S.; Liu, Z. S.; Zeng, K.: Simulation of instrumented indentation and material characterization, Materials science and engineering A 390, No. 1-2, 202-209 (2005) · Zbl 1093.74517
[30] Yan, J.; Karlsson, A. M.; Chen, X.: Determining plastic properties of a material with residual stress by using conical indentation, International journal of solids and structures 44, No. 11-12, 3720-3737 (2007) · Zbl 1178.74072 · doi:10.1016/j.ijsolstr.2006.10.017
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.