×

zbMATH — the first resource for mathematics

A new Kirchhoff plate model based on a modified couple stress theory. (English) Zbl 1167.74489
Summary: A new Kirchhoff plate model is developed for the static analysis of isotropic micro-plates with arbitrary shape based on a modified couple stress theory containing only one material length scale parameter which can capture the size effect. The proposed model is capable of handling plates with complex geometries and boundary conditions. From a detailed variational procedure the governing equilibrium equation of the micro-plate and the most general boundary conditions are derived, in terms of the deflection, using the principle of minimum potential energy. The resulting boundary value problem is of the fourth order (instead of existing gradient theories which is of the sixth order) and it is solved using the Method of Fundamental Solutions (MFS) which is a boundary-type meshless method. Several plates of various shapes, aspect and Poisson’s ratios are analyzed to illustrate the applicability of the developed micro-plate model and to reveal the differences between the current model and the classical plate model. Moreover, useful conclusions are drawn from the micron-scale response of this new Kirchhoff plate model.

MSC:
74K20 Plates
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Altan, B. S.; Aifantis, E. C.: On the structure of the mode III crack-tip in gradient elasticity, Scripta met. 26, 319-324 (1992)
[2] Askes, H.; Aifantis, E. C.: Numerical modeling of size effects with gradient elasticity – formulation, meshless discretization and example, Int. J. Fracture 117, 347-358 (2002)
[3] Bezine, G.: Boundary integral equations for plate flexure with arbitrary boundary conditions, Mech. res. Commun. 5, 197-206 (1978) · Zbl 0399.73062
[4] Dym, C. L.; Shames, J. H.: Solid mechanics. A variational approach, (1973) · Zbl 1279.74001
[5] Exadaktylos, G. E.; Vardoulakis, I.: Microstructure in linear elasticity and scale effects: a reconsideration of basic rock mechanics and rock fracture mechanics, Tectonophysics 335, 81-109 (2001)
[6] Gao, X. -L.; Park, S. K.: Variational formulation of a simplified strain gradient elasticity theory and its application to a pressurized thick-walled cylinder problem, Int. J. Solids struct. 44, 7486-7499 (2007) · Zbl 1166.74318
[7] Karageorghis, A.; Fairweather, G.: The method of fundamental solutions for the numerical solution of the biharmonic equation, J. comput. Phys. 69, 434-459 (1987) · Zbl 0618.65108
[8] Karageorghis, A.; Fairweather, G.: The almansi method of fundamental solutions for solving biharmonic problems, Int. J. Numer. meth. Eng. 26, 1665-1682 (1988) · Zbl 0639.65066
[9] Karageorghis, A.; Fairweather, G.: The simple layer potential method of fundamental solutions for certain biharmonic problems, Int. J. Numer. meth. Fluids 9, 1221-1234 (1989) · Zbl 0687.76028
[10] Katsikadelis, J.T., 1982. The analysis of plates on elastic foundation by the boundary integral equation method. Ph. D. Thesis, Polytechnic Institute of New York.
[11] Katsikadelis, J. T.: Boundary elements: theory and applications, (2002) · Zbl 1051.74052
[12] Katsikadelis, J. T.; Armenakas, A. E.: New boundary equation solution to the plate problem, J. appl. Mech.-T. ASME 56, 364-374 (1989) · Zbl 0711.73260
[13] Kong, S.; Zhou, S.; Nie, Z.; Wang, K.: The size-dependent natural frequency of Bernoulli – Euler micro-beams, Int. J. Eng. sci. 46, 427-437 (2008) · Zbl 1213.74189
[14] Koiter, W.T., 1964. Couple stresses in the theory of elasticity, I and II. In: Proc. K. Ned. Akad. Wet. (B) 67, pp. 17 – 44. · Zbl 0119.39504
[15] Lam, D. C. C.; Yang, F.; Chong, A. C. M.; Wang, J.; Tong, P.: Experiments and theory in strain gradient elasticity, J. mech. Phys. solids 51, 1477-1508 (2003) · Zbl 1077.74517
[16] Lazopoulos, K. A.: On the gradient strain elasticity theory of plates, Euro. J. Mech. A/solids 23, 843-852 (2004) · Zbl 1058.74570
[17] Li, X.; Zhu, J.: The method of fundamental solutions for nonlinear elliptic problems, Eng. anal. Bound. elem. 33, 322-329 (2009) · Zbl 1244.65221
[18] Ma, H. M.; Gao, X. -L.; Reddy, J. N.: A microstructure-dependent Timoshenko beam model based on a modified couple stress theory, J. mech. Phys. solids 56, 3379-3391 (2008) · Zbl 1171.74367
[19] Mindlin, R. D.: Micro-structure in linear elasticity, Arch. ration. Mech. anal. 16, 51-78 (1964) · Zbl 0119.40302
[20] Papargyri-Beskou, S.; Beskos, D. E.: Static, stability and dynamic analysis of gradient elastic flexural Kirchhoff plates, Arch. appl. Mech. 78, 625-635 (2008) · Zbl 1239.74047
[21] Park, S. K.; Gao, X. -L.: Bernoulli – Euler beam model based on a modified couple stress theory, J. micromech. Microeng. 16, 2355-2359 (2006)
[22] Park, S. K.; Gao, X. -L.: Variational formulation of a modified couple stress theory and its application to a simple shear problem, Z. angew. Math. phys. 59, 904-917 (2008) · Zbl 1157.74014
[23] Reddy, J. N.: Theory and analysis of elastic plates, (1999)
[24] Stern, M.: A general boundary integral formulation for the numerical solution of plate bending problems, Int. J. Solids struct. 15, 769-782 (1979) · Zbl 0405.73054
[25] Timoshenko, S. P.; Woinowsky-Krieger, S.: Theory of plates and shells, (1959) · Zbl 0114.40801
[26] Timoshenko, S. P.; Goodier, J. N.: Theory of elasticity, (1970) · Zbl 0266.73008
[27] Tsepoura, K.; Papargyri-Beskou, S.; Polyzos, D.; Beskos, D. E.: Static and dynamic analysis of gradient elastic bars in tension, Arch. appl. Mech. 72, 483-497 (2002) · Zbl 1053.74028
[28] Vardoulakis, I.; Sulem, J.: Bifurcation analysis in geomechanics, (1995) · Zbl 0900.73645
[29] Yang, F.; Chong, A. C. M.; Lam, D. C. C.; Tong, P.: Couple stress based strain gradient theory of elasticity, Int. J. Solids struct. 39, 2731-2743 (2002) · Zbl 1037.74006
[30] Zeb, A.; Ingham, D. B.; Lesnic, D.: The method of fundamental solutions for a biharmonic inverse boundary determination problem, Comp. mech. 42, 371-379 (2008) · Zbl 1163.65078
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.