×

zbMATH — the first resource for mathematics

A four-node discrete singular convolution for geometric transformation and its application to numerical solution of vibration problem of arbitrary straight-sided quadrilateral plates. (English) Zbl 1167.74484
Summary: A four-node discrete singular convolution (DSC) method is developed for free vibration analysis of arbitrary straight-sided quadrilateral plates. The straight-sided quadrilateral domain is mapped into a square domain in the computational space using a four-node element. By using the geometric transformation, the governing equations and boundary conditions of the plate are transformed from the physical domain into a square computational domain. Numerical examples illustrating the accuracy and convergence of the DSC method for skew, trapezoidal, rhombic and arbitrary quadrilateral plates are presented. The results obtained by DSC method were compared with those obtained by the other numerical methods.

MSC:
74K20 Plates
65R10 Numerical methods for integral transforms
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Liew, K.M.; Han, J.-B., A four-node differential quadrature method for straight-sided quadrilateral Reissner/Mindlin plates, Commun. numer. methods eng., 13, 73-81, (1997) · Zbl 0865.73078
[2] Han, J.B.; Liew, K.M., An eight-node curvilinear differential quadrature formulation for Reissner/Mindlin plates, Comput. methods appl. mech. eng., 141, 265-280, (1997) · Zbl 0896.73074
[3] Kitipornchai, S.; Xiang, Y.; Wang, Y.C.M.; Liew, K.M., Buckling analysis of thick skew plates, Int. J. numer. methods eng., 36, 8, 299-1310, (1993) · Zbl 0772.73042
[4] Liew, K.M.; Han, J.-B., Bending analysis of simply supported shear deformable skew plates, J. eng. mech. ASCE, 123, 3, 214-221, (1995)
[5] Wang, C.M.; Liew, K.M.; Alwis, W.A.M., Buckling of skew plates and corner condition for simply supported edges, J. eng. mech. ASCE, 118, 4, 651-662, (1992)
[6] Liew, K.M.; Xiang, Y.; Kitipornchai, S.; Wang, C.M., Vibration of thick skew plates based on Mindlin shear deformation plate theory, J. sound vib., 168, 39-69, (1993) · Zbl 0925.73419
[7] Liew, K.M.; Lam, K.Y., Application of two dimensional plate functions to flexural vibration of skew plates, J. sound vib., 139, 2, 241-252, (1990)
[8] Liew, K.M.; Wang, C.M., Vibration studies on skew plates: treatment of internal line supports, Comput. struct., 49, 941-951, (1993)
[9] Xiang, Y.; Kitipornchai, S.; Liew, K.M.; Lim, M.K., Vibration of stiffened skew Mindlin plates, Acta mech., 112, 11-28, (1995) · Zbl 0855.73046
[10] Durvasula, S., Natural frequencies and mode of clamped skew plates, Aiaa j., 7, 811-816, (1969)
[11] Liew, K.M.; Hung, K.C.; Lim, M.K., Vibration characteristic of simply supported thick skew plates in three-dimensional setting, J. appl. mech. ASME, 62, 880-886, (1995) · Zbl 0860.73031
[12] Liew, K.M.; Huang, Y.Q.; Reddy, J.N., Analysis of general shaped thin plates by the moving least-squares differential quadrature method, Finite elem. anal. des., 40, 1453-1474, (2004)
[13] Liew, K.M.; Wang, J.; Ng, T.Y.; Tan, M.J., Free vibration and buckling analyses of shear-deformable plates based on FSDT meshfree method, J. sound vib., 276, 997-1017, (2004)
[14] Singh, B.; Chakraverty, S., Flexural vibration of skew plates using boundary characteristic orthogonal polynomials in two variables, J. sound vib., 173, 157-178, (1994) · Zbl 1078.74588
[15] Civalek, Ö., Application of differential quadrature (DQ) and harmonic differential quadrature (HDQ) for buckling analysis of thin isotropic plates and elastic columns, Eng. struct., 26, 2, 171-186, (2004)
[16] Leissa, A.W., Recent research in plate vibrations: 1981-1985: part I. classical theory, Shock vib. digest, 19, 2, 11-18, (1987)
[17] Wang, X.; Striz, A.G.; Bert, C.W., Buckling and vibration analysis of skew plates by the differential quadrature method, Aiaa j., 32, 4, 886-889, (1994)
[18] Sengupta, D., Performance study of a simple finite element in the analysis of skew rhombic plats, Comput. struct., 54, 1173-1182, (1995)
[19] Wei, G.W., Discrete singular convolution for the solution of the fokker – planck equations, J. chem. phys., 110, 8930-8942, (1999)
[20] Wei, G.W., Solving quantum eigenvalue problems by discrete singular convolution, J. phys. B: at. mol. opt. phys., 33, 343-352, (2000)
[21] Wei, G.W., Discrete singular convolution for the sine – gordon equation, Physica D, 137, 247-259, (2000) · Zbl 0944.35087
[22] Wei, G.W., A unified approach for the solution of the fokker – planck equation, J. phys. A: math. gen., 33, 4935-4953, (2000) · Zbl 0988.82047
[23] Wei, G.W., Wavelets generated by using discrete singular convolution kernels, J. phys. A: math. gen., 33, 8577-8596, (2000) · Zbl 0961.42019
[24] Wei, G.W.; Zhang, D.S.; Althorpe, S.C.; Kouri, D.J.; Hoffman, D.K., Wavelet-distributed approximating functional method for solving the navier – stokes equation, Comput. phys. commun., 115, 18-24, (1998) · Zbl 1018.76031
[25] Wei, G.W.; Kouri, D.J.; Hoffman, D.K., Wavelets and distributed approximating functionals, Comput. phys. commun., 112, 1-6, (1998) · Zbl 0935.65150
[26] Zhao, S.; Wei, G.W.; Xiang, Y., DSC analysis of free-edged beams by an iteratively matched boundary method, J. sound vib., 284, 487-493, (2005) · Zbl 1237.74198
[27] Hou, Z.J.; Wei, G.W., A new approach to edge detection, Pattern recogn., 35, 1559-1570, (2002) · Zbl 1032.68735
[28] Wang, Y.; Zhao, Y.B.; Wei, G.W., A note on the numerical solution of high-order differential equations, J. comput. appl. math., 159, 387-398, (2003) · Zbl 1031.65087
[29] Zhao, S.; Wei, G.W., Comparison of the discrete singular convolution and three other numerical schemes for solving fisher’s equation, SIAM J. sci. comput., 25, 127-147, (2003) · Zbl 1043.35015
[30] Wei, G.W.; Zhao, Y.B.; Xiang, Y., The determination of natural frequencies of rectangular plates with mixed boundary conditions by discrete singular convolution, Int. J. mech. sci., 43, 1731-1746, (2001) · Zbl 1018.74017
[31] Zhao, Y.B.; Wei, G.W.; Xiang, Y., Discrete singular convolution for the prediction of high frequency vibration of plates, Int. J. solids struct., 39, 65-88, (2002) · Zbl 1090.74604
[32] Zhao, Y.B.; Wei, G.W.; Xiang, Y., Plate vibration under irregular internal supports, Int. J. solids struct., 39, 1361-1383, (2002) · Zbl 1090.74603
[33] Zhao, Y.B.; Wei, G.W., DSC analysis of rectangular plates with non-uniform boundary conditions, J. sound vib., 255, 2, 203-228, (2002)
[34] Ng, C.H.W.; Zhao, Y.B.; Wei, G.W., Comparison of discrete singular convolution and generalized differential quadrature for the vibration analysis of rectangular plates, Comput. methods appl. mech. eng., 193, 2483-2506, (2004) · Zbl 1067.74600
[35] Civalek, Ö., An efficient method for free vibration analysis of rotating truncated conical shells, Int. J. pressure vessels piping, 83, 1-12, (2006)
[36] Civalek, Ö., Three-dimensional vibration, buckling and bending analyses of thick rectangular plates based on discrete singular convolution method, Int. J. mech. sci., 49, 752-765, (2007)
[37] Civalek, Ö., Nonlinear analysis of thin rectangular plates on winkler – pasternak elastic foundations by DSC-HDQ methods, Appl. math. model., 31, 606-624, (2007) · Zbl 1197.74198
[38] Civalek, Ö., Free vibration analysis of composite conical shells using the discrete singular convolution algorithm, Steel compos. struct., 6, 4, 353-366, (2006)
[39] Civalek, Ö., Numerical analysis of free vibrations of laminated composite conical and cylindrical shells: discrete singular convolution (DSC) approach, J. comput. appl. math., 205, 251-271, (2007) · Zbl 1115.74058
[40] Hou, Y.G.; Wei, G.W.; Xiang, Y., DSC-Ritz method for the free vibration analysis of Mindlin plates, Int. J. numer. methods eng., 62, 262-288, (2005) · Zbl 1179.74175
[41] Lim, C.W.; Li, Z.R.; Xiang, Y.; Wei, G.W.; Wang, C.M., On the missing modes when using the exact frequency relationship between Kirchhoff and Mindlin plates, Adv. vib. eng., 4, 221-248, (2005)
[42] Lim, C.W.; Li, Z.R.; Wei, G.W., DSC-Ritz method for high-mode frequency analysis of thick shallow shells, Int. J. numer. methods eng., 62, 205-232, (2005) · Zbl 1179.74178
[43] Wei, G.W., A new algorithm for solving some mechanical problems, Comput. methods appl. mech. eng., 190, 2017-2030, (2001) · Zbl 1013.74081
[44] Wei, G.W.; Zhao, Y.B.; Xiang, Y., A novel approach for the analysis of high-frequency vibrations, J. sound vib., 257, 2, 207-246, (2002)
[45] Wei, G.W., Vibration analysis by discrete singular convolution, J. sound vib., 244, 535-553, (2001) · Zbl 1237.74095
[46] Wei, G.W., Discrete singular convolution for beam analysis, Eng. struct., 23, 1045-1053, (2001)
[47] Wei, G.W.; Zhao, Y.B.; Xiang, Y., Discrete singular convolution and its application to the analysis of plates with internal supports: part 1. theory and algorithm, Int. J. numer. methods eng., 55, 913-946, (2002) · Zbl 1058.74643
[48] Xiang, Y.; Zhao, Y.B.; Wei, G.W., Discrete singular convolution and its application to the analysis of plates with internal supports: part 2. applications, Int. J. numer. methods eng., 55, 947-971, (2002) · Zbl 1058.74644
[49] Wan, D.C.; Wei, G.W., Numerical solutions of incompressible Euler and navier – stokes equations by efficient discrete singular convolution method, Acta mech. sinica, 16, 3, 223-239, (2000)
[50] A.W. Leissa, Vibration of plates, NASA, SP-160, 1969. · Zbl 0181.52603
[51] Krishna Reddy, A.R.; Palaninathan, R., Free vibration of skew laminates, Comput. struct., 70, 415-423, (1999) · Zbl 0941.74532
[52] Karami, G.; Malekzadeh, P., An efficient differential quadrature methodology for free vibration analysis of arbitrary straight-sided quadrilateral thin plates, J. sound vib., 263, 415-442, (2003) · Zbl 1237.74212
[53] Gorman, D.J., Accurate free vibration analysis of rhombic plates with simply supported and fully clamped edge conditions, J. sound vib., 125, 2, 281-290, (1988)
[54] Kanunasena, W.; Liew, K.M.; Al-Bermani, F.G.A., Natural frequencies of thick arbitrary quadrilateral plates using the pb-2 Ritz method, J. sound vib., 196, 4, 371-385, (1996)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.