×

zbMATH — the first resource for mathematics

Boundary conditions at fluid-permeable interfaces in porous media: a variational approach. (English) Zbl 1167.74393
Summary: A general set of boundary conditions at fluid-permeable interfaces between dissimilar fluid-filled porous matrices is established starting from an extended Hamilton-Rayleigh principle. These conditions do include friction and inertial effects. Once linearized, they encompass boundary conditions relative to volume Darcy-Brinkman and to surface Saffman-Beavers-Joseph dissipation effects.

MSC:
74F10 Fluid-solid interactions (including aero- and hydro-elasticity, porosity, etc.)
74G65 Energy minimization in equilibrium problems in solid mechanics
76S05 Flows in porous media; filtration; seepage
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Alazmi, B.; Vafai, K.: Analysis of fluid flow and heat transfer interfacial conditions between a porous medium and a fluid layer, Int. J. Heat mass transfer 44, 1735-1749 (2001) · Zbl 1091.76567 · doi:10.1016/S0017-9310(00)00217-9
[2] Albers, B.: Monochromatic surface waves at the interface between poroelastic and fluid half-spaces, Proc. R. Soc. lond. A 462, 701-723 (2006) · Zbl 1149.74347 · doi:10.1098/rspa.2005.1578
[3] Allaire, G.: Homogenization of the Stokes flow in a connected porous medium, Asymptotic anal. 2, No. 3, 203-222 (1989) · Zbl 0682.76077
[4] Allaire, G.: Homogénéisation desquations de Stokes dans un domaine perforé de petits trous répartis périodiquement, CR acad. Sci. Paris sr. I 309, No. 11, 741-746 (1989) · Zbl 0696.73010
[5] Allaire, G.: Homogenization of the Navier – Stokes equations in open sets perforated with tiny holes, Arch. rational mech. Anal. 113, 209-298 (1991) · Zbl 0724.76020 · doi:10.1007/BF00375065
[6] Allaire, G.: Homogenization of the Navier – Stokes equations with a slip boundary condition, Commun. pure appl. Math. 44, 605-641 (1991) · Zbl 0738.35059 · doi:10.1002/cpa.3160440602
[7] Allaire, G.: Continuity of the Darcy’s law in the low-volume fraction limit, Ann. scuola norm. Sup. Pisa cl. Sci. 18, No. 4, 475-499 (1991) · Zbl 0755.35084 · numdam:ASNSP_1991_4_18_4_475_0
[8] Altay, G.; Dokmeci, M. C.: On the equations governing the motion of an anisotropic poroelastic material, Proc. R. Soc. A 462, 2373-2396 (2006) · Zbl 1149.74328 · doi:10.1098/rspa.2006.1665
[9] Baek, S.; Srinivasa, A. R.: Diffusion of a fluid through an elastic solid undergoing large deformation, Int. J. Non-linear mech. 39, 201-218 (2004) · Zbl 1213.76072 · doi:10.1016/S0020-7462(02)00153-1
[10] Batra, G.; Bedford, A.; Drumheller, D. S.: Applications of hamiltons principle to continua with singular surfaces, Arch. rational mech. Anal. 93, 223-251 (1986) · Zbl 0604.73004 · doi:10.1007/BF00281499
[11] Beavers, G. S.; Joseph, D. D.: Boundary conditions at a naturally permeable wall, J. fluid mech. 30, 197-207 (1967)
[12] Bedford, A.; Drumheller, D. S.: A variational theory of immiscible mixtures, Arch. rational mech. Anal. 68, 37-51 (1978) · Zbl 0391.76012 · doi:10.1007/BF00276178
[13] Bedford, A.; Drumheller, D. S.: A variational theory of porous media, Int. J. Solids struct. 15, 967-980 (1979) · Zbl 0411.73088 · doi:10.1016/0020-7683(79)90025-8
[14] Bedford, A.; Drumheller, D. S.: Recent advances: theories of immiscible and structured mixtures, Int. J. Eng. sci. 21, 863-960 (1983) · Zbl 0534.76105 · doi:10.1016/0020-7225(83)90071-X
[15] Biot, M. A.: General theory of three-dimensional consolidation, J. appl. Phys. 12, 155-164 (1941) · JFM 67.0837.01 · doi:10.1063/1.1712886
[16] Biot, M. A.: General solutions of the equations of elasticity and consolidation for a porous material, J. appl. Mech. 23, 91-96 (1956) · Zbl 0074.19101
[17] Biot, M. A.: Theory of propagation of elastic waves in fluid-saturated porous solid, J. acoust. Soc. am. 28, 168-191 (1956)
[18] Biot, M. A.: Mechanics of deformation and acoustic propagation in porous media, J. appl. Phys. 33, 1482-1498 (1962) · Zbl 0104.21401 · doi:10.1063/1.1728759
[19] Biot, M. A.: Variational principles for acoustic gravity waves, Phys. fluids 6, 772-778 (1963)
[20] Biot, M. A.: Variational principles in heat transfer: A unified Lagrangian analysis of dissipative phenomena, (1970) · Zbl 0191.39402
[21] Biot, M. A.; Willis, D. G.: The elastic coefficients of the theory of consolidation, J. appl. Mech. 24, 594-601 (1957)
[22] Brinkman, H. C.: A calculation of the viscous force exerted by a flowing fluid on a dense swarm of particles, Appl. sci. Res. A 1, 27-34 (1947) · Zbl 0041.54204 · doi:10.1007/BF02120313
[23] Burridge, R.; Keller, J. B.: Poroelasticity equations derived from microstructure, J. acoust. Soc. am. 70, No. 4, 1140-1146 (1981) · Zbl 0519.73038 · doi:10.1121/1.386945
[24] Casertano, L.; Del Castillo, A. Oliveri; Quagliariello, M. T.: Hydrodynamics and geodynamics in campi flegrei area of Italy, Nature 264, 161-164 (1976)
[25] Chandesris, M.; Jamet, D.: Boundary conditions at a planar fluid – porous interface for a Poiseuille flow, Int. J. Heat mass transfer 49, 2137-2150 (2006) · Zbl 1189.76589 · doi:10.1016/j.ijheatmasstransfer.2005.12.010
[26] Chandesris, M.; Jamet, D.: Boundary conditions at a fluid – porous interface: an a priori estimation of the stress jump coefficients, Int. J. Heat mass transfer 50, 3422-3436 (2007) · Zbl 1115.76075 · doi:10.1016/j.ijheatmasstransfer.2007.01.053
[27] Chateau, X.; Dormieux, L.: Homogénéisation d’un milieu poreux non saturé:Lemme de Hill et applications, CR acad. Sci. Paris 320, No. Série IIb, 627-634 (1995) · Zbl 0838.73003
[28] Chateau, X.; Dormieux, L.: Approche micromécanique du comportement dun milieu poreux non saturé, CR acad. Sci. Paris 326, No. Srie II, 533-538 (1998) · Zbl 0961.74053 · doi:10.1016/S1251-8069(98)80017-3
[29] Cieszko, M.; Kubik, J.: Interaction of elastic waves with a fluid-saturated porous solid boundary, J. theor. Appl. mech. 36, 561-580 (1998) · Zbl 1092.74534
[30] Cieszko, M.; Kubik, J.: Derivation of matching conditions at the contact surface between fluid-saturated porous solid and bulk fluid, Transport porous med. 34, 319-336 (1999)
[31] Coussy, O.: Poromechanics, (2004) · Zbl 1120.74447
[32] Coussy, O.; Bourbie, T.: Propagation des ondes acoustiques dans LES milieux poreux saturés, Rev. inst. Fr. pet. 39, 47-66 (1984)
[33] Coussy, O.; Dormieux, L.; Detournay, E.: From mixture theory to biots approach for porous media, Int. J. Solids struct. 35, 4619-4635 (1998) · Zbl 0932.74014 · doi:10.1016/S0020-7683(98)00087-0
[34] Cowin, S. C.: Bone mechanics handbook, (2001)
[35] Cryer, C. W.: A comparison of the three dimensional consolidation theories of Biot and terzaghi, Q. J. Mech. appl. Math. 16, No. 4, 401-412 (1963) · Zbl 0121.21502 · doi:10.1093/qjmam/16.4.401
[36] Debergue, P.; Panneton, R.; Atalla, N.: Boundary conditions for the weak formulation of the mixed (u,p) poroelasticity problem, J. acoust. Soc. am. 106, No. 5, 2383-2390 (1999)
[37] De Boer, R.: Highlights in the historical development of the porous media theory: toward a consistent macroscopic theory, Appl. mech. Rev. 49, No. 4, 201-262 (1996)
[38] De Boer, R.: Contemporary progress in porous media theory, Appl. mech. Rev. 53, 323-370 (2000)
[39] De Boer, R.: Theoretical poroelasticity a new approach, Chaos, solitons & fractals 25, 861-878 (2005) · Zbl 1071.74019
[40] de Buhan, P., Dormieux, L., Chateau, X. 1998a. A micro – macro approach to the constitutive formulation of large strain poroelasticity. Poromechanics a tribute to Maurice A. Biot. Thimus et al., Rotterdam. · Zbl 0936.74025
[41] De Buhan, P.; Chateau, X.; Dormieux, L.: The constitutive equations of finite strain poroelasticity in the light of a micro – macro approach, Eur. J. Mech. A 17, 909-921 (1998) · Zbl 0936.74025 · doi:10.1016/S0997-7538(98)90501-0
[42] De La Cruz, V.; Hube, J.; Spanos, T. J. T.: Reflection and transmission of seismic waves at the boundaries of porous media, Wave motion 16, 323-338 (1992)
[43] Dell’isola, F.; Rosa, L.; Woźniak, C.: A micro-structured continuum modelling compacting fluid-saturated grounds: the effects of pore-size scale parameter, Acta mech. 127, No. 1:4, 165-182 (1998) · Zbl 0897.73003 · doi:10.1007/BF01170371
[44] Dell’isola, F.; Guarascio, M.; Hutter, K.: A variational approach for the deformation of a saturated porous solid A second gradient theory extending terzaghis effective stress principle, Arch. appl. Mech. 70, 323-337 (2000) · Zbl 0981.74016 · doi:10.1007/s004199900020
[45] Dell’isola, F.; Sciarra, G.; Batra, R. C.: Static deformations of a linear elastic porous body filled with an inviscid fluid, J. elasticity 72, 99-120 (2003) · Zbl 1060.74022 · doi:10.1023/B:ELAS.0000018765.68432.bb
[46] Deresiewicz, H.: The effect of boundaries on wave propagation in a liquid filled porous solid: I. Reflection of plane waves at a free plane boundary (non-dissipative case), Bull. seismol. Soc. am. 50, 599-607 (1960)
[47] Deresiewicz, H.: The effect of boundaries on wave propagation in a liquid filled porous solid: III. Reflection of plane waves at a free plane boundary (general case) bull, Seismol. soc. Am. 52, 595-625 (1962)
[48] Deresiewicz, H.: A note on love waves in a homogeneous crust overlying an inhomogeneous substratum, Bull. seismol. Soc. am. 52, 639-645 (1962)
[49] Deresiewicz, H.: The effect of boundaries on wave propagation in a liquid filled porous solid: IV. Surface in a half-space, Bull. seismol. Soc. am. 50, 627-638 (1962)
[50] Deresiewicz, H.: On uniqueness in dynamic poroelasticity, Bull. seismol. Soc. am. 53, 783-788 (1963)
[51] Deresiewicz, H.: The effect of boundaries on wave propagation in a liquid filled porous solid: V. Transmission across a plane interface, Bull. seismol. Soc. am. 54, 409-416 (1964)
[52] Deresiewicz, H.: The effect of boundaries on wave propagation in a liquid filled porous solid: VII. Surface waves in a half-space in the presence of a liquid layer, Bull. seismol. Soc. am. 54, 425-430 (1964)
[53] Dormieux, L.; Stolz, C.: Approche variationelle en poroélasticité, CR acad. Sci. Paris 315, No. Série IIb, 407-412 (1992) · Zbl 0749.73004
[54] Dormieux, L.; Coussy, O.; De Buhan, P.: Modélisation mécanique d’un milieu polyphasique par la méthode des puissances virtuelles, CR acad. Sci. Paris 313, No. Série IIb, 863-868 (1991) · Zbl 0733.73015
[55] Dormieux, L.; Kondo, D.; Ulm, F. -J.: Microporomechanics, (2006) · Zbl 1112.76002
[56] Dunn, J. E.; Rajagopal, K. R.: Fluids of differential type: critical review and thermodynamic analysis, Int. J. Eng. sci. 33, No. 5, 689-729 (1995) · Zbl 0899.76062 · doi:10.1016/0020-7225(94)00078-X
[57] Fillunger, P.: Erbdaumechanik, (1936)
[58] Gavrilyuk, S. L.; Gouin, H.: A new form of governing equations of fluids arising from Hamilton’s principle, Int. J. Eng. sci. 37, 1495-1520 (1999) · Zbl 1210.76009 · doi:10.1016/S0020-7225(98)00131-1
[59] Gavrilyuk, S.; Perepechko, Yu.V.: Variational approach to constructing hyperbolic models of two-velocity media, J. appl. Mech. tech. Phys. 39, No. 5, 684-698 (1998) · Zbl 0930.76006
[60] Gavrilyuk, S.; Saurel, R.: Rankine – hugoniot relations for shocks in heterogeneous mixtures, J. fluid mech. 575, 495-507 (2007) · Zbl 1147.76590 · doi:10.1017/S0022112006004496
[61] Gavrilyuk, S. L.; Gouin, H.; Perepechko, Yu.V.: A variational principle for two-fluid models, CR acad. Sci. Paris 324, No. Série IIb, 483-490 (1997) · Zbl 0877.76057 · doi:10.1016/S1251-8069(97)80186-8
[62] Gavrilyuk, S. L.; Gouin, H.; Perepechko, Yu.V.: Hyperbolic models of homogeneous two-fluid mixtures, Meccanica 33, 161-175 (1998) · Zbl 0923.76335 · doi:10.1023/A:1004354528016
[63] Germain, P.: Cours de mcanique des milieux continus tome 1 thorie gnrale, (1973) · Zbl 0254.73001
[64] Gouin, H.: Variational theory of mixtures in continuum mechanics, Eur. J. Mech. B 9, 469-491 (1990) · Zbl 0704.76001
[65] Gouin, H.; Gavrilyuk, S. L.: Hamilton’s principle and rankine – hugoniot conditions for general motions of mixtures, Meccanica 34, 39-47 (1998) · Zbl 0947.76090 · doi:10.1023/A:1004370127958
[66] Goyeau, B.; Lhuillier, D.; Gobin, D.; Velarde, M. G.: Momentum transport at a fluid porous interface, Int. J. Heat mass transfer 46, 4071-4081 (2003) · Zbl 1065.76606 · doi:10.1016/S0017-9310(03)00241-2
[67] Haber, S.; Mauri, R.: Boundary conditions for darcys flow through porous media, Int. J. Multiphase flow 9, 561-574 (1983) · Zbl 0539.76094 · doi:10.1016/0301-9322(83)90018-6
[68] Hassanizadeh, S. M.; Gray, W.: Boundary and interface conditions in porous media, Water resour. Res. 25, 1705-1715 (1989) · Zbl 0665.76123
[69] Hornung, U.: Homogenization and porous media, Interdiscipline in applied mathematics 6 (1997) · Zbl 0872.35002
[70] Houlsbya, G. T.; Puzrin, A. M.: Rate-dependent plasticity models derived from potential functions, J. rheol. 46, No. 1, 113-126 (2002)
[71] Jager, W.; Mikelic, A.: On the interface boundary condition of Beavers, Joseph, and Saffman, SIAM J. Appl. math. 60, 1111-1127 (2000) · Zbl 0969.76088 · doi:10.1137/S003613999833678X
[72] Kaasschieter, E. F.; Frijns, A. J. H.: Squeezing a sponge: a three-dimensional solution in poroelasticity, Comput. geosci. 7, 49-59 (2003) · Zbl 1064.76107 · doi:10.1023/A:1022423528367
[73] Kosiński, W.: Field singularities and wave analysis in continuum mechanics, (1986) · Zbl 0622.73032
[74] Kubik, J.; Cieszko, M.: Analysis of matching conditions at the boundary surface of a fluid-saturated porous solid and a bulk fluid: the use of Lagrange multipliers, Continuum mech. Thermodyn. 17, No. 4, 351-359 (2005) · Zbl 1113.76089 · doi:10.1007/s00161-005-0001-6
[75] Kuznetsov, A. V.: Influence of the stress jump condition at the porous medium/clear fluid interface on a flow at porous wall, Int. commun. Heat mass transfer 24, 401-410 (1997)
[76] Le Bars, M.; Worster, M. Grae: Interfacial conditions between a pure fluid and a porous medium: implications for binary alloy solidification, J. fluid mech. 550, 149-173 (2006) · Zbl 1097.76066 · doi:10.1017/S0022112005007998
[77] Lee, C. K.: Flow and deformation in poroelastic media with moderate load and weak inertia, Proc. R. Soc. lond. A 460, 2051-2087 (2004) · Zbl 1109.76377 · doi:10.1098/rspa.2003.1250
[78] Levy, T.; Sanchez-Palencia, E.: On boundary conditions for fluid flow in porous media, Int. J. Eng. sci. 13, 923-940 (1975) · Zbl 0321.76038 · doi:10.1016/0020-7225(75)90054-3
[79] Madeo, A.; Dell’isola, F.; Ianiro, N.; Sciarra, G.: A variational deduction of second gradient poroelasticity II: An application to the consolidation problem, J. mech. Mater. struct. 3, No. 4, 607-625 (2008)
[80] Mandel, J.: Consolidation des sols (tude math matique), Geotechnique 3, 287-299 (1953)
[81] Marle, C. M.: On macroscopic equations governing multiphase flow with diffusion and chemical reactions in porous media, Int. J. Eng. sci. 20, No. 5, 643-662 (1982) · Zbl 0544.76105 · doi:10.1016/0020-7225(82)90118-5
[82] Mobbs, S. D.: Variational principles for perfect and dissipative fluid flows, Proc. R. Soc. lond. A 381, 457-468 (1982) · Zbl 0494.76007 · doi:10.1098/rspa.1982.0083
[83] Neale, G.; Nader, W.: Practical significance of Brinkman’s extension of Darcy’s law: coupled parallel flows within a channel and a bounding porous medium, Can. J. Chem. eng. 52, 475-478 (1974)
[84] Ochoa-Tapia, J. A.; Whitaker, S.: Momentum transfer at the boundary between a porous medium and a homogeneous fluid I. Theoretical development, Int. J. Heat mass transfer 38, 2635-2646 (1995) · Zbl 0923.76320 · doi:10.1016/0017-9310(94)00346-W
[85] Ochoa-Tapia, J. A.; Whitaker, S.: Momentum transfer at the boundary between a porous medium and a homogeneous fluid II. Comparison with experiment, Int. J. Heat mass transfer 38, 2647-2655 (1995) · Zbl 0923.76320 · doi:10.1016/0017-9310(94)00346-W
[86] Ochoa-Tapia, J. A.; Whitaker, S.: Momentum jump condition at the boundary between a porous medium and a homogeneous fluid: inertial effects, J. porous media 1, 201-217 (1998) · Zbl 0931.76094
[87] Orsi, G.; Petrazzuoli, S. M.; Wohletz, K.: Mechanical and thermo-fluid behaviour during unrest at the campi flegrei caldera (Italy), J. vulcanol. Geotherm. res. 91, 453-470 (1999)
[88] Pan, Y.; Horne, R. N.: Generalized macroscopic models for fluid flow in deformable porous media, Theor. transport porous med. 45, 1-27 (2001)
[89] Poulikakos, D.; Kazmierczak, M.: Forced convection in a duct partially filled with a porous material, J. heat transfer 109, 653-662 (1987)
[90] Prat, M.: On the boundary conditions at the macroscopic level transp, Porous med. 4, 259-280 (1988)
[91] Prat, M.: Sur LES conditions aux limites pour LES equations macroscopiques de transfert dans LES milieux poreux cas de la diffusion pure, CR acad. Sci. Paris 308, No. Srie II, 1523-1528 (1989) · Zbl 0666.76127
[92] Quiroga-Goode, G.; Carcione, J. M.: Heterogeneous modelling behaviour at an interface in porous media, Comput. geosci. 1, 109-125 (1997) · Zbl 0963.76588 · doi:10.1023/A:1011513111341
[93] Rajagopal, K. R.; Srinivasa, A. R.: A thermodynamic frame work for rate type fluids, J. non-Newton fluid mech. 88, No. 3, 207-227 (2000) · Zbl 0960.76005 · doi:10.1016/S0377-0257(99)00023-3
[94] Rajagopal, K. R.; Tao, L.: Mechanics of mixtures, Series in advantages of mathematical and applied science 35 (1995) · Zbl 0941.74500
[95] Rajagopal, K. R.; Wineman, A. S.; Gandhi, M. V.: On boundary conditions for a certain class of problems in mixture theory, Int. J. Eng. sci. 24, 1453-1463 (1986) · Zbl 0594.73007 · doi:10.1016/0020-7225(86)90074-1
[96] Rasolofosaon, N. J. P.; Coussy, O.: Propagation des ondes acoustiques dans LES milieux poreux saturs: effets dinterface I, Rev. inst. Fr. pet. 40, 581-594 (1985)
[97] Rasolofosaon, N. J. P.; Coussy, O.: Propagation des ondes acoustiques dans LES milieux poreux saturs: effets dinterface II, Rev. inst. Fr. pet. 40, 785-802 (1985)
[98] Rasolofosaon, N. J. P.; Coussy, O.: Propagation des ondes acoustiques dans LES milieux poreux saturs: effets dinterface III, Rev. inst. Fr. pet. 41, 91-103 (1986)
[99] Saffman, P. G.: On the boundary conditions at the surface of a porous medium, Stud. appl. Math. L, 93-101 (1971) · Zbl 0271.76080
[100] Savaré, G.; Tomarelli, F.: Superposition and chain rule for bounded Hessian functions, Adv. math. 140, 237-281 (1998) · Zbl 0919.49001 · doi:10.1006/aima.1998.1770
[101] Sciarra, G.; Dell’isola, F.; Ianiro, N.; Madeo, A.: A variational deduction of second gradient poroelasticity I: General theory, J. mech. Mater. struct. 3, No. 3, 507-526 (2008)
[102] Seliger, R. L.; Whitham, G. B.: Variational principles in continuum mechanics, Proc. R. Soc. lond. A 305, 1-25 (1968) · Zbl 0198.57601 · doi:10.1098/rspa.1968.0103
[103] Sharma, M. D.: Wave propagation across the boundary between two dissimilar poroelastic solids, J. sound vib. 314, 657-671 (2008)
[104] Sonnet, A. M.; Maffettone, P. L.; Virga, E. G.: Continuum theory for nematic liquid crystals with tensorial order, J. non-Newton fluid mech. 119, 51-59 (2004) · Zbl 1074.76007 · doi:10.1016/j.jnnfm.2003.02.001
[105] Srinivasa, A. R.: Flow characteristics of a ”multiconfigurational”, shear thinning viscoelastic fluid with particular reference to the orthogonal rheometer, Theoret. comput. Fluid dyn. 13, 305-325 (2000) · Zbl 0967.76011 · doi:10.1007/s001620050002
[106] Terzaghi, K. V.: Theoretical soil mechanics, (1943)
[107] Vafai, K.; Kim, S. J.: Analysis of surface enhancement by a porous substrate, J. heat transfer 112, 700-706 (1990)
[108] Vafai, K.; Thiyagaraja, R.: Analysis of flow and heat transfer at the interface region of a porous medium, Int. J. Heat mass transfer 30, 1391-1405 (1987) · Zbl 0628.76098 · doi:10.1016/0017-9310(87)90171-2
[109] Valdés-Paradaa, F. J.; Goyeaub, B.; Ochoa-Tapiaa, J. A.: Diffusive mass transfer between a microporous medium and a homogeneous fluid: jump boundary conditions, Chem. eng. Sci. 61, 1692-1704 (2006)
[110] Wilmanski, K.: Waves in porous and granular materials, Kinetic and continuum theories of granular and porous media, 131-185 (1999) · Zbl 0941.74024
[111] Wilmanski, K.: A few remarks on biots model and linear acoustics of poroelastic saturated materials, Soil dyn. Earthq. eng. 26, 509-536 (2006)
[112] Yang, J.: Importance of flow condition on seismic waves at a saturated porous solid boundary, J. sound vib. 221, No. 3, 391-413 (1999)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.