×

zbMATH — the first resource for mathematics

Reaction-diffusion systems for the macroscopic bidomain model of the cardiac electric field. (English) Zbl 1167.35403
Summary: The paper deals with a mathematical model for the electric activity of the heart at the macroscopic level. The membrane model used to describe the ionic currents is a generalization of the phase-I Luo-Rudy, a model widely used in 2-D and 3-D simulations of the propagation of the action potential. From the mathematical viewpoint the model is made up of a degenerate parabolic reaction diffusion system coupled with an ODE system. We derive existence, uniqueness and some regularity results.

MSC:
35K57 Reaction-diffusion equations
92C30 Physiology (general)
Software:
Diffpack
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Amann, H., Dynamic theory of quasilinear parabolic equations. II. reaction – diffusion systems, Differential integral equations, 3, 1, 13-75, (1990) · Zbl 0729.35062
[2] Amar, M.; Andreucci, D.; Bisegna, P.; Gianni, R., An elliptic equation with history, C. R. math. acad. sci. Paris, 338, 8, 595-598, (2004) · Zbl 1101.35076
[3] Amar, M.; Andreucci, D.; Bisegna, P.; Gianni, R., Existence and uniqueness for an elliptic problem with evolution arising in electrodynamics, Nonlinear anal. real world appl., 6, 2, 367-380, (2005) · Zbl 1149.35343
[4] Amar, M.; Andreucci, D.; Bisegna, P.; Gianni, R., On a hierarchy of models for electrical conduction in biological tissues, Math. methods appl. sci., 29, 7, 767-787, (2005) · Zbl 1097.35022
[5] Amar, M.; Andreucci, D.; Gianni, R.; Bisegna, P., Evolution and memory effects in the homogenization limit for electrical conduction in biological tissues, Math. models methods appl. sci., 14, 9, 1261-1295, (2004) · Zbl 1071.35008
[6] Beeler, G.W.; Reuter, H., Reconstruction of the action potential of ventricular myocardial fibres, J. physiol., 268, 177-210, (1977)
[7] Y. Bourgault, Y. Coudière, C. Pierre, Existence and uniqueness of the solution for the bidomain model used in cardiac electrophysiology, Nonlinear Anal. Real World Appl., in press (doi:10.1016/j.nonrwa.2007.10.007)
[8] Butzer, P.L.; Berens, H., ()
[9] Cannarsa, P.; Vespri, V., On maximal \(L^p\) regularity for the abstract Cauchy problem, Boll. unione. mat. ital. B (6), 5, 1, 165-175, (1986) · Zbl 0608.35027
[10] Colli Franzone, P.; Guerri, L., Spread of excitation in 3-D models of the anisotropic cardiac tissue. I. validation of the eikonal approach, Math. biosci., 113, 145-209, (1993) · Zbl 0786.92012
[11] Colli Franzone, P.; Guerri, L.; Pennacchio, M.; Taccardi, B., Spread of excitation in 3-D models of the anisotropic cardiac tissue. III. effects of ventricular geometry and fibre structure on the potential distribution, Math. biosci., 151, 51-98, (1998) · Zbl 0938.92009
[12] Colli Franzone, P.; Guerri, L.; Rovida, S., Wavefront propagation in an activation model of the anisotropic cardiac tissue: asymptotic analysis and numerical simulations, J. math. biol., 28, 2, 121-176, (1990) · Zbl 0733.92006
[13] Colli Franzone, P.; Pavarino, L.F., A parallel solver for reaction – diffusion systems in computational electrocardiology, Math. models methods appl. sci., 14, 6, 883-911, (2004) · Zbl 1068.92024
[14] Colli Franzone, P.; Pavarino, L.F.; Taccardi, B., Simulating patterns of excitation, repolarization and action potential duration with cardiac bidomain and monodomain models, Math. biosci., 197, 1, 35-66, (2005) · Zbl 1074.92004
[15] Colli Franzone, P.; Savaré, G., Degenerate evolution systems modeling the cardiac electric field at micro- and macroscopic level, (), 49-78 · Zbl 1036.35087
[16] Davies, E.B., ()
[17] de Simon, L., Un’applicazione Della teoria degli integrali singolari allo studio delle equazioni differenziali lineari astratte del primo ordine, Rend. sem. mat. univ. Padova, 34, 205-223, (1964) · Zbl 0196.44803
[18] Evans, L.C., ()
[19] Faber, G.M.; Rudy, Y., Action potential and contractility changes in \([N a +]_i\) overloaded cardiac myocites: A simulation study, Biophys. J., 78, 2392-2404, (2000)
[20] Foster, K.R.; Schwan, H.P., Dielectric properties of tissues and biological materials: A critical review, Crit. rev. biomed. eng., 17, 25-104, (1989)
[21] Fox, J.J.; McHarg, J.L.; Gilmour, R.F.J., Ionic mechanism of electrical alternans, Am. J. physiol. heart. circ. physiol., 282, H516-H530, (2002)
[22] Garfinkel, A.; Kim, Y.-H.; Voroshilovsky, O.; Qu, Z.; Kil, J.R.; Lee, M.-H.; Karagueuzian, H.S.; Weiss, J.N.; Chen, P.-S., Preventing ventricular fibrillation by flattening cardiac restitution, Proc. natl. acad. sci., 97, 11, 6061-6066, (2000)
[23] Henriquez, C.S., Simulating the electrical behavior of cardiac tissue using the bidomain model, Crit. rev. biomed. eng., 21, 1-77, (1993)
[24] Henriquez, C.S.; Muzikant, A.L.; Smoak, C.K., Anisotropy, fibre curvature and Bath loading effects on activation in thin and thick cardiac tissu preparations: simulations in a three-dimensional bidomain model, J. cardiovasc. electrophysiol., 7, 5, 424-444, (1996)
[25] Hodgkin, A.L.; Huxley, A.F., A quantitative description of membrane current and its application to conduction and excitation in nerve, J. physiol., 117, 500-544, (1952)
[26] N. Hooke, Efficient simulation of action potential propagation Ph.D. Thesis, Duke Univ., Dept. of Comput. Sci., 1992
[27] Hund, T.J.; Rudy, Y., Rate dependence and regulation of action potential and calcium transient in a canine cardiac centricular cell model, Circulation, 110, 3168-3174, (2004)
[28] Kandel, E.R.; Schwartz, J.H.; Jessel, T.M., Principles of neural science, (2000), Mc Graw-Hill New York
[29] Keener, J.P.; Sneyd, J., ()
[30] ()
[31] Lions, J.-L., Théorèmes de trace et d’interpolation. I, Ann. scuola norm. sup. Pisa (3), 13, 389-403, (1959) · Zbl 0097.09502
[32] Lions, J.-L., ()
[33] Lions, J.-L., Quelques méthodes de résolution des problèmes aux limites non linéaires, (1969), Dunod · Zbl 0189.40603
[34] Lions, J.-L.; Magenes, E., Non-homogeneous boundary value problems and applications. vol. II, (1972), Springer-Verlag New York, Translated from the French by P. Kenneth, Die Grundlehren der mathematischen Wissenschaften, vol. 182 · Zbl 0227.35001
[35] Lunardi, A., ()
[36] Luo, C.; Rudy, Y., A dynamic model of the cardiac ventricular action potential. I. simulations of ionic currents and concentration changes, Circ. res., 74, 1071-1096, (1994)
[37] Luo, C.-H.; Rudy, Y., A model of the ventricular cardiac action potential: depolarization, repolarization, and their interaction, Circ. res., 68, 1501-1526, (1991)
[38] Muzikant, A.L., Region specific modeling of cardiac muscle: comparison of simulated and experimental potentials, Ann. biomed. eng., 30, 867-883, (2002)
[39] Neu, J.S.; Krassowska, W., Homogenization of syncytial tissues, Crit. rev. biomed. eng., 21, 137-199, (1993)
[40] Noble, D.; Rudy, Y., Models of cardiac ventricular action potentials: iterative interaction between experiment and simulation, Philos. trans. R. soc. lond., 359, 1783, 1127-1142, (2001)
[41] Panfilov, A.V.; Aliev, R.R., A simple two-variable model of cardiac excitation, Chaos solitons fractals, 7, 3, 293-301, (1996)
[42] Pennacchio, M.; Savaré, G.; Colli Franzone, P., Multiscale modeling for the bioelectric activity of the heart, SIAM J. math. anal., 37, 4, 1333-1370, (2005), electronic · Zbl 1113.35019
[43] Priebe, L.; Beuckelmann, D.J., Simulation study of cellular electric properties in heart failure, Circ. res., 98, 1206-1223, (1998)
[44] Rappel, W.J., Filament instability and rotational tissue anisotropy: A numerical study using detailed cardiac models, Chaos, 11, 1, 71-80, (2001) · Zbl 1070.92510
[45] Roger, J.; McCulloch, A., A collocation-Galerkin finite element model of cardiac action potential propagation, IEEE trans. biomed. eng., 41, 743-757, (1994)
[46] Roth, B.J., Action potential propagation in a thick strand of cardiac muscle, Circ. res., 68, 162-173, (1991)
[47] Roth, B.J., How the anisotropy of the intracellular and extracellular conductivities influences stimulation of cardiac muscle, J. math. biol., 30, 6, 633-646, (1992) · Zbl 0748.92004
[48] Roth, B.J., Frequency locking of meandering spiral waves in cardiac tissue, Phys. rev. E, 57, R3735-R3738, (1998)
[49] Roth, B.J.; Krassowska, W., The induction of reentry in cardiac tissue the missing link: how electrics fields alter transmembrane potential, Chaos, 8, 204-219, (1998)
[50] Showalter, R.E., ()
[51] Smoller, J., ()
[52] ten Tusscher, K.H.W.J.; Noble, D.; Noble, P.J.; Panfilov, A.V., A model for human ventricular tissue, Am. J. physiol. heart. circ. physiol., 286, H1573-H1589, (2004)
[53] Trayanova, N.; Skouibine, K.; Aguel, F., The role of cardiac tissue structure in defibrillation, Chaos, 8, 221-253, (1998)
[54] Triebel, H., Interpolation theory, function spaces, differential operators, (1995), Johann Ambrosius Barth Heidelberg · Zbl 0830.46028
[55] Veneroni, M., Reaction – diffusion systems for the microscopic cellular model of the cardiac electric field, Math. methods appl. sci., 29, 14, 1631-1661, (2006) · Zbl 1108.35090
[56] Wikswo, J.P., Tissue anisotropy, the cardiac bidomain, and the virtual cathod effect, (), 348-361
[57] Winslow, R.L.; Rice, J.; Jafri, S.; Marban, E.; O’Rourke, B., Mechanisms of altered excitation – contraction coupling in canine tachycardia-induced heart failure, ii, model studies, Circ. res., 84, 571-586, (1999)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.