×

zbMATH — the first resource for mathematics

Soliton solutions for the Fitzhugh-Nagumo equation with the homotopy analysis method. (English) Zbl 1167.35395
Summary: An analytic technique, the homotopy analysis method (HAM), is applied to obtain the soliton solution of the Fitzhugh-Nagumo equation. The homotopy analysis method (HAM) is one of the most effective method to obtain the exact solution and provides us with a new way to obtain series solutions of such problems. HAM contains the auxiliary parameter \(\hbar\), which provides us with a simple way to adjust and control the convergence region of series solution.

MSC:
35K57 Reaction-diffusion equations
35Q51 Soliton equations
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] S.J. Liao, The proposed homotopy analysis technique for the solution of nonlinear problems, Ph.D. Thesis, Shanghai Jiao Tong University, 1992.
[2] Liao, S.J., Beyond perturbation: introduction to the homotopy analysis method, (2003), Chapman & Hall/CRC Press Boca Raton
[3] Liao, S.J., On the analytic solution of magnetohydrodynamic flows non-Newtonian fluids over a stretching sheet, J. fluid mech., 488, 189-212, (2003) · Zbl 1063.76671
[4] Liao, S.J., A new branch of solutions of boundary-layer flows over an impermeable stretched plate, Int. J. heat mass transfer, 48, 2529-2539, (2005) · Zbl 1189.76142
[5] Liao, S.J.; Su, J.; Chwang, A.T., Series solutions for a nonlinear model of combined convective and radiative cooling of a spherical body, Int. J. heat mass transfer, 49, 2437-2445, (2006) · Zbl 1189.76549
[6] Liao, S.J.; Magyari, E., Exponentially decaying boundary layers as limiting cases of families of algebraically decaying ones, Z. angew. math. phys. (ZAMP), 57, 777-792, (2006) · Zbl 1101.76056
[7] Liao, S.J., Series solutions of unsteady boundary-layer flows over a stretching flat plate, Stud. appl. math., 117, 239-264, (2006) · Zbl 1145.76352
[8] Abbas, Z.; Sajid, M.; Hayat, T., MHD boundary layer flow of an upper-convected Maxwell fluid in a porous channel, Theor. comput. fluid dyn., 20, 229-238, (2006) · Zbl 1109.76065
[9] Abbasbandy, S., The application of homotopy analysis method to nonlinear equations arising in heat transfer, Phys. lett. A, 360, 109-113, (2006) · Zbl 1236.80010
[10] Abbasbandy, S., The application of homotopy analysis method to solve a generalized hirota – satsuma coupled KdV equation, Phys. lett. A, 361, 478-483, (2007) · Zbl 1273.65156
[11] Hayat, T.; Khan, M.; plate, Homotopy solutions for a generalized second-grade fluid past a porous, Nonlinear dyn., 42, 395-405, (2005)
[12] Hayat, T.; Khan, M.; Ayub, M., On non-linear flows with slip boundary condition, Zamp, 56, 1012-1029, (2005) · Zbl 1097.76007
[13] Hayat, T.; Shahzad, F.; Ayub, M., Analytical solution for the steady flow of the third grade fluid in a porous half space, Appl. math. model., 31, 243-250, (2007) · Zbl 1117.76059
[14] Hayat, T.; Abbas, Z.; Sajid, M., Series solution for the upper-convected Maxwell fluid over a porous stretching plate, Phys. lett. A, 358, 396-403, (2006) · Zbl 1142.76511
[15] Hayat T, T.; Ellahi, R.; Ariel, P.D.; Asghar, S., Homotopy solution for the channel flow of a third grade fluid, Nonlinear dyn., 45, 55-64, (2006) · Zbl 1100.76005
[16] Hayat, T.; Khan, M.; Sajid, M.; Ayub, M., Steady flow of an Oldroyd 8-constant fluid between coaxial cylinders in a porous medium, J. porous media, 9, 709-722, (2006)
[17] Hayat, T.; Ellahi, R.; Asghar, S., The influence of variable viscosity and viscous dissipation on the non-Newtonian flow: an analytical solution, Comm. nonlinear sci. numer. simulation, 12, 300-313, (2007) · Zbl 1102.76003
[18] Hayat, T.; Sajid, M., Analytic solution for axisymmetric flow and heat transfer of a second grade fluid past a stretching sheet, Int. J. heat mass transfer, 50, 75-84, (2007) · Zbl 1104.80006
[19] Hayat, T.; Abbas, Z.; Sajid, M.; Asghar, S., The influence of thermal radiation on MHD flow of a second grade fluid, Int. J. heat mass transfer, 50, 931-941, (2007) · Zbl 1124.80325
[20] Sajid, M.; Hayat, T.; Asghar, S., On the analytic solution of the steady flow of a forth grade fluid, Phys. lett. A, 355, 18-26, (2006)
[21] Sajid, M.; Hayat, T.; Asghar, S., Non-similar analytic solution for MHD flow and heat transfer in a third-order fluid over a stretching sheet, Int. J. heat mass transfer, 50, 1723-1736, (2007) · Zbl 1140.76042
[22] Tan, Y.; Abbasbandy, S., Homotopy analysis method for quadratic Riccati differential equation, Commun. nonlinear sci. numer. simul., 13, 539-546, (2008) · Zbl 1132.34305
[23] Fitzhugh, R., Impulse and physiological states in models of nerve membrane, Biophys. J., 1, 445-466, (1961)
[24] Nagumo, J.S.; Arimoto, S.; Yoshizawa, S., An active pulse transmission line simulating nerve axon, Proc. IRE, 50, 2061-2070, (1962)
[25] Shih, M.; Momoniat, E.; Mahomed, F.M., Approximate conditional symmetries and approximate solutions of the perturbed fitzhugh – nagumo equation, J. math. phys., 46, 023503, (2005) · Zbl 1076.35052
[26] Kawahara, T.; Tanaka, M., Interaction of travelling fronts: an exact solution of a nonlinear diffusion equation, Phys. lett. A, 97, 311-314, (1983)
[27] Nucci, M.C.; Clarkson, P.A., The nonclassical method is more general than the direct method for symmetry reductions: an example of the fitzhughnagumo equation, Phys. lett. A, 164, 49-56, (1992)
[28] Li, H.; Guo, Y., New exact solutions to the fitzhugh – nagumo equation, Appl. math. comput., 180, 524-528, (2006) · Zbl 1102.35315
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.