zbMATH — the first resource for mathematics

A \(C^{k}\) continuous generalized finite element formulation applied to laminated Kirchhoff plate model. (English) Zbl 1166.74044
Summary: A generalized finite element method based on a partition of unity (POU) with smooth approximation functions is investigated for modeling laminated plates under Kirchhoff hypothesis. The shape functions are built from the product of a Shepard POU and enrichment functions. The Shepard functions have a smoothness degree directly related to weight functions adopted for their evaluation. The weight functions at a point are built as products of \(C^{\infty}\) edge functions of the distance of such a point to each of the cloud boundaries. Different edge functions are investigated to generate \(C^{k}\) functions. The POU together with polynomial global enrichment functions build the approximation subspace. The formulation implemented in this paper is aimed at the general case of laminated plates composed of anisotropic layers. A detailed convergence analysis is presented, and the integrability of these functions is also discussed.

74S05 Finite element methods applied to problems in solid mechanics
74K20 Plates
74E30 Composite and mixture properties
PDF BibTeX Cite
Full Text: DOI
[1] Amarantuga K, Williams JR, Quan S, Weis J (1994) Wavelet-Galerkin solutions for one-dimensional partial differential equations. Int J Numer Methods Eng 37: 2703–2716 · Zbl 0813.65106
[2] Atluri SN, Zhu T (1998) New meshless local Petrov-Galerkin (MPLG) approach in computational mechanics. Comput Mech 22: 117–127 · Zbl 0932.76067
[3] Babuška I, Melenk JM (1995) The partition of unity method. Technical Note BN-1185, Institute for Physical Science and Technology, University of Maryland
[4] Babuška I, Melenk JM (1996) The particion of unity finite element method: basic theory and applications. Comput Methods Appl Mech Eng 139: 289–314 · Zbl 0881.65099
[5] Barros FB, Proença SPB, de Barcellos CS (2004) On error estimator and p-adaptivity in the generalized finite element method. Int J Numer Meth Eng 60: 2373–2398 · Zbl 1075.74634
[6] Barros FB, de Barcellos CS, Duarte CA (2007) p-Adaptive C k generalized finite element method for arbitrary polygonal clouds. Comput Mech 41: 175–187 · Zbl 1162.74455
[7] Beirãoda Veiga L, Niiranen J, Eternberg R (2007) A family of C 0 finite element for Kirchhoff plates I: error analysis. SIAM J Numer Anal 45: 2047–2071 · Zbl 1152.74043
[8] Belinha J, Dinis L (2006) Elasto-plastic analysis of plates by the element free Galerkin Method. Eng Comput 23: 525–551 · Zbl 1182.74248
[9] Belinha J, Dinis L (2006) Analysis of plates and laminates using the element free Galerkin method. Comput Struct 84: 1547–1559 · Zbl 1182.74248
[10] Belytschko T, Black T (1999) Elastic crack growth in finite elements with minimal remeshing. Int J Numer Methods Eng 45: 601–620 · Zbl 0943.74061
[11] Belytschko T, Liu W, Singer M (1998) On adaptivity and error criteria for mesh free methods. In: Ladéveze P, Oden JT (eds) Adv Adaptive Comput Methods Mech 217–228
[12] Belytschko T, Lu YY, Gu J (1993) Crack propagation by element free Galerkin methods. In: Advanced computational methods for material modeling, AMD vol 180/PVP vol 268. ASME, New York, pp 191–205
[13] Bucciarelli LL, Dworsky N (1980) Sophie Germain. An essay in the history of the theory of elasticity. Reidel, Dordrecht · Zbl 0544.73001
[14] De S, Bathe KJ (2000) The method of finite spheres. Comput Mech 25: 329–345 · Zbl 0952.65091
[15] Dolbow J, Moës N, Belytschko T (2000) Modeling fracture in Mindlin-Reissner plates with the extended finite element method. Int J Solids Struct 37: 7161–7183 · Zbl 0993.74061
[16] Donning BM, Liu WK (1998) Meshless methdos for shear-deformable beams and plates. Comput Methods Appl Mech Eng 152: 47–71 · Zbl 0959.74079
[17] Duarte CA, Babuška I, Oden JT (2000) Generalized finite element method for three-dimensional structural mechanics problems. Comput Struct 77: 215–232
[18] Duarte CA, Kim DJ, Quaresma DM (2006) Arbitrarily smooth generalized element approximations. Comput Methods Appl Mech Eng 196: 33–56 · Zbl 1120.74816
[19] Duarte CA, Hamzeh ON, Liska TJ, Tworzyllo WW (2001) A generalized finite element method for the simulation of three- dimensional dynamic crack propagation. Comput Methods Appl Mech Eng 190: 2227–2262 · Zbl 1047.74056
[20] Duarte CA, Oden JT (1995) hp Clouds–A meshless method to solve boundary value problems. TICAM report 95-05, University of Texas
[21] Duarte CA, Oden JT (1996) hp Clouds–an hp meshless method. Numer Methods Partial Diff Equ 12: 673–705 · Zbl 0869.65069
[22] Duarte CA, Oden JT (1996) An h-p adaptive method using clouds. TICAM report 96-07, University of Texas · Zbl 0918.73328
[23] Dunavant DA (1985) High degree efficient symmetrical gaussian quadrature rules for the triangle. Int J Numer Methods Eng 21: 1129–1148 · Zbl 0589.65021
[24] Edwards HC (1996) Cfinite element basis functions. Technical Report, TICAM report 96-45. The University of Texas at Austin
[25] Edwards HC (1997) A parallel infrastructure for scalable adaptive finite element methods and its application hp least squares Ccolocation. PhD dissertation, The University of Texas at Austin, Austin, TX, USA
[26] Garcia O, Fancello EA, de Barcellos CS, Duarte CA (2000) hp-Clouds in Mindlin’s thick plate model. Int J Numer Methods Eng 47: 1381–1400 · Zbl 0987.74067
[27] Gingold RA, Monaghan JJ (1982) Kernel estimates as a basis for general particle methods in hydrodynamics. J Comput Phys 46: 429–453 · Zbl 0487.76010
[28] Griebel M, Schweitzer MA (2000) A particle-partition of unity method for the solution of elliptic, parabolic and hyperbolic pdes. SIAM J Sci Comput 22: 853–890 · Zbl 0974.65090
[29] Kirchhoff GR (1850) Uber das Gleichgewicht und die Bewegung Einer Elastichen Scheibe. J Reine Angew Math 40: 51–88 · ERAM 040.1086cj
[30] Krysl P, Belytschko T (1996) Analysis of thin plates by the element-free Galerkin method. Comput Mech 17: 26–35 · Zbl 0841.73064
[31] Krysl P, Belytschko T (1996) Analysis of thin shells by the element-free Galerkin method. Int J Solids Struct 33: 3057–3080 · Zbl 0929.74126
[32] Liu WK, Jun S, Zhang Y (1995) Reproducing kernel particle methods. Int J Numer Methods Eng 20: 1081–1106 · Zbl 0881.76072
[33] Lu H, Li S, Simkins DC Jr, Liu WK, Cao J (2004) Reproducing Kernel Element Method. Part III: Generalized enrichment and applications. Comput Methods Appl Mech Eng 193: 989–1011 · Zbl 1060.74671
[34] Melenk JM (1995) On generalized finite element methods. PhD Thesis, University of Maryland, College Park.
[35] Moës N, Dolbow J, Belytschko T (1999) Elastic crack growth in finite elements without remeshing. Int J Numer Methods Eng 46: 131–150 · Zbl 0955.74066
[36] Nicolazzi LC, Duarte CA, Fancello EA, de Barcellos CS (1997) hp-Clouds–a meshless method in boundary elements. Part II: implementation. Int J Boundary Element Methods Commun 8: 83–85
[37] Nayroles B, Touzot G, Villon P (1992) Generalizing the finite element method: diffuse approximation and diffuse elements. Comput Mech 10: 307–318 · Zbl 0764.65068
[38] Oden JT, Duarte CA, Zienkiewicz OC (1998) A new cloud-based hp finite element method. Comput Methods Appl Mech Eng 153: 117–126 · Zbl 0956.74062
[39] Reddy JN (1997) Mechanics of laminated composite plates and shells, 2nd edn. CRC Press, USA
[40] Rvachev VL, Sheiko TI (1995) R-functions in boundary value problems in mechanics. Appl Mech Rev 48(4): 151–188
[41] Shapiro V (1991) Theory of R-functions and applications: a primer. Technical report TR91-1219, Computer Science Department, Cornell University, Ithaca, NY
[42] Shepard D (1968) A two-dimensional function for irregularly spaced data. In: ACM National Conference, pp 517–524
[43] Simkins DC Jr, Li S, Lu H, Liu WK (2004) Reproducing kernel element method. Part IV: Globally compatible C n (n 1) triangular hierarchy. Comput Methods Appl Mech Eng 193: 1013–1034 · Zbl 1093.74064
[44] Stoker JJ (1942) Mathematical problems connected with the plate bending and buckling of elastic plates. Bull Am Math Soc 48: 247–261 · Zbl 0061.43001
[45] Strouboulis T, Copps K, Babuska I (2001) The generalized finite element method. Comput Methods Appl Mech Eng 190: 4081–4193 · Zbl 0997.74069
[46] Sukumar N, Moran B, Belytschko T (1998) The natural element method. Int J Numer Methods Eng 43: 839–887 · Zbl 0940.74078
[47] Whitney JM (1987) Structural analysis of laminated anisotropic plates. Technomic Publications Inc, Lancaster
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.