zbMATH — the first resource for mathematics

A three-scale domain decomposition method for the 3D analysis of debonding in laminates. (English) Zbl 1166.74039
Summary: The prediction of the quasi-static response of industrial laminate structures requires to use fine descriptions of the material, especially when debonding is involved. Even when modeled at the mesoscale, the computation of these structures results in very large numerical problems. In this paper, an exact mesoscale solution is sought using parallel iterative solvers. The LaTIn-based mixed domain decomposition method makes it very easy to handle the complex description of the structure; moreover, the provided multiscale features enable us to deal with numerical difficulties at their natural scale. We present various enhancements to ensure the scalability of the method. An extension of the method designed to handle instabilities is also presented.

74S05 Finite element methods applied to problems in solid mechanics
74R99 Fracture and damage
74E30 Composite and mixture properties
Full Text: DOI
[1] Allix O, Corigliano A (1996) Modeling and simulation of crack propagation in mixed-modes interlaminar fracture specimens. Int J Fract 77: 11–140 · doi:10.1007/BF00037233
[2] Allix O, Ladevèze P (1992) Interlaminar interface modelling for the prediction of delamination. Comput Struct 22: 235–242 · doi:10.1016/0263-8223(92)90060-P
[3] Allix O, Lévêque D, Perret L (1998) Identification and forecast of delamination in composite laminates by an interlaminar interface model. Compos Sci Technol 58: 671–678 · doi:10.1016/S0266-3538(97)00144-9
[4] Ben Dhia H, Rateau G (2005) The arlequin method as a flexible engineering design tool. Int J Numer Methods Eng 62(11): 1442–1462 · Zbl 1084.74049 · doi:10.1002/nme.1229
[5] Cresta P, Allix O, Rey C, Guinard S (2007) Nonlinear localization strategies for domain decomposition methods in structural mechanics. Comput Methods Appl Mech Eng 196: 1436–1446 · Zbl 1173.74408 · doi:10.1016/j.cma.2006.03.013
[6] Crisfield MA (1981) A fast incremental iterative solution procedure that handles ’snap-through’. Comput Struct 13: 55–62 · Zbl 0479.73031 · doi:10.1016/0045-7949(81)90108-5
[7] De Borst R, Remmers JC (2006) Computational modelling of delamination. Compos Sci Technol 66: 713–722 · doi:10.1016/j.compscitech.2004.12.025
[8] Dostál Z, Horák D, Vlach O (2007) Feti-based algorithms for modelling of fibrous composite materials with debonding. Math Comput Simul 76: 57–64 · Zbl 1132.74044 · doi:10.1016/j.matcom.2007.01.026
[9] Farhat C, Roux FX (1991) A method of finite element tearing and interconnecting and its parallel solution algorithm. Int J Numer Methods Eng 32: 1205–1227 · Zbl 0758.65075 · doi:10.1002/nme.1620320604
[10] Feyel F, Chaboche J-L (2000) Fe2 multiscale approach for modelling the elastoviscoplastic behaviour of long fibre sic/ti composite materials. Comput Methods Appl Mech Eng 183: 309–330 · Zbl 0993.74062 · doi:10.1016/S0045-7825(99)00224-8
[11] Fish J, Shek K, Pandheeradi M, Shephard MS (1997) Computational plasticity for composite structures based on mathematical homogenization: Theory and practice. Comput Methods Appl Mech Eng 148: 53–73 · Zbl 0924.73145 · doi:10.1016/S0045-7825(97)00030-3
[12] Germain N, Besson J, Feyel F, Gosselet P (2007) High-performance parallel simulation of structure degradation using non-local damage models. Int J Numer Methods Eng 71: 253–276 · Zbl 1194.74399 · doi:10.1002/nme.1937
[13] Ghosh S, Lee K, Raghavan P (2001) A multi-level computational model for multi-scale damage analysis in composite and porous materials. Int J Solids Struct 38: 2335–2385 · Zbl 1015.74058 · doi:10.1016/S0020-7683(00)00167-0
[14] Gosselet P, Rey C (2006) Non-overlapping domain decomposition methods in structural mechanics. Arch Comput Methods Eng 13: 515–572 · Zbl 1171.74041 · doi:10.1007/BF02905857
[15] Guidault P-A, Allix O, Champaney L, Cornuault S (2008) A multiscale extended finite element method for crack propagation. Comput Methods Appl Mech Eng 197(5): 381–399 · Zbl 1169.74604 · doi:10.1016/j.cma.2007.07.023
[16] Hughes TJR, Feijoo GR, Mazzei L, Quincy J-B (1998) The variarional multiscale–a paradigm for computational mechanics. Comput Methods Appl Mech Eng 166: 3–24 · Zbl 1017.65525 · doi:10.1016/S0045-7825(98)00079-6
[17] Ladevèze P, Dureisseix D (2000) A micro/macro approch for parallel computing of heterogeneous structures. Int J Comput Civil Struct Eng 1: 18–28
[18] Ladevèze P, Lubineau G (2002) An enhanced mesomodel for laminates based on micromechanics. Compos Sci Technol 62(4): 533–541 · doi:10.1016/S0266-3538(01)00145-2
[19] Ladevèze P, Lubineau G, Violeau D (2006) A computational damage micromodel of laminated composites. Int J Fract 137: 139–150 · Zbl 1197.74087 · doi:10.1007/s10704-005-3077-x
[20] Ladevèze P, Néron D, Passieux J-C (2008) On multiscale computational mechanics with time-space homogenization. In: Fish J (ed) Bridging the scales in science and engineering. Oxford University Press, London (in press)
[21] Ladevèze P, Nouy A (2003) On a multiscale computational strategy with time and space homogenization for structural mechanics. Comput Methods Appl Mech Eng 192: 3061–3087 · Zbl 1054.74701 · doi:10.1016/S0045-7825(03)00341-4
[22] Mandel J (1993) Balancing domain decomposition. Commun Numer Methods Eng 9: 233–241 · Zbl 0796.65126 · doi:10.1002/cnm.1640090307
[23] Melenk J, Babuška I (1996) The partition of unity finite element method: basic theory and applications. Comput Methods Appl Mech Eng 39: 289–314 · Zbl 0881.65099 · doi:10.1016/S0045-7825(96)01087-0
[24] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. Int J Eng Sci 46: 131–150 · Zbl 0955.74066
[25] Oden JT, Vemaganti K, Moës N (1999) Hierarchical modeling of heterogeneous solids. Comput Methods Appl Mech Eng 172: 3–25 · Zbl 0972.74014 · doi:10.1016/S0045-7825(98)00224-2
[26] Oliver J, Huespe AE (2004) Continuum approach to material failure in strong discontinuity settings. Comput Methods Appl Mech Eng 193: 3195–3220 · Zbl 1060.74507 · doi:10.1016/j.cma.2003.07.013
[27] Pebrel J, Rey C, Gosselet P (2008) A nonlinear dual domain decomposition method: application to structural problems with damage. Int J Multiscale Comput Eng 6(3): 251–262 · doi:10.1615/IntJMultCompEng.v6.i3.50
[28] Riks E (1972) The application of newton’s methods to the problem of the application of newton’s methods to the problem of elastic stability. Journal of Applied Mechanics 39: 1060–1065 · Zbl 0254.73047 · doi:10.1115/1.3422829
[29] Sanchez-Palencia E (1980) Non homogeneous media and vibration theory. Lecture notes in physics, vol 127. Springer, Berlin · Zbl 0432.70002
[30] Schellenkens JCJ, De Borst R (1993) On the numerical integration of interface elements. Int J Numer Methods Eng 36(1): 43–66 · Zbl 0825.73840 · doi:10.1002/nme.1620360104
[31] Stein E, Ohnimus S (1997) Coupled model- and solution-adaptivity in the finite-element method. Comput Methods Appl Mech Eng 150: 327–350 · Zbl 0926.74127 · doi:10.1016/S0045-7825(97)00082-0
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.