Ford, Neville J.; Connolly, Joseph A. Systems-based decomposition schemes for the approximate solution of multi-term fractional differential equations. (English) Zbl 1166.65066 J. Comput. Appl. Math. 229, No. 2, 382-391 (2009). Summary: We give a comparison of the efficiency of three alternative decomposition schemes for the approximate solution of multi-term fractional differential equations using the Caputo form of the fractional derivative. The schemes we compare are based on conversion of the original problem into a system of equations. We review alternative approaches and consider how the most appropriate numerical scheme may be chosen to solve a particular equation. Cited in 24 Documents MSC: 65R20 Numerical methods for integral equations 45J05 Integro-ordinary differential equations 45G10 Other nonlinear integral equations 26A33 Fractional derivatives and integrals 65L05 Numerical methods for initial value problems Keywords:fractional differential equations; numerical examples; multi-term equations; Caputo fractional derivative PDF BibTeX XML Cite \textit{N. J. Ford} and \textit{J. A. Connolly}, J. Comput. Appl. Math. 229, No. 2, 382--391 (2009; Zbl 1166.65066) Full Text: DOI References: [1] Bagley, R.L.; Torvik, P.J., On the appearance of the fractional derivative in the behaviour of real materials, J. appl. mech., 51, 294-298, (1984) · Zbl 1203.74022 [2] J.T. Chern, Finite element modelling of viscoelastic materials on the theory of fractional calculus, Ph.D. Thesis, Pennsylvania State University, 1993 [3] Diethelm, K., An algorithm for the numerical solution of differential equations of fractional order, Elec. transact. numer. anal., 5, 1-6, (1997) · Zbl 0890.65071 [4] Diethelm, K., Efficient solution of multi-term fractional differential equations using \(P(E C)^m E\) methods, Computing, 71, 305-319, (2003) · Zbl 1035.65066 [5] Diethelm, K.; Ford, J.M.; Ford, N.J.; Weilbeer, M., Pitfalls in fast numerical solution of fractional differential equations, J. comput. appl. math., 186, 482-503, (2006) · Zbl 1078.65550 [6] Diethelm, K.; Ford, N.J., Numerical solution methods for distributed order differential equations, Fract. calc. appl. anal., 4, 531-542, (2001) · Zbl 1032.65070 [7] Diethelm, K.; Ford, N.J., Analysis of fractional differential equations, J. math. anal. appl., 265, 229-248, (2002) · Zbl 1014.34003 [8] Diethelm, K.; Ford, N.J., Numerical solution of the bagley-torvik equation, Bit, 42, 490-507, (2002) · Zbl 1035.65067 [9] Diethelm, K.; Ford, N.J., Multi-order fractional differential equations and their numerical solution, Appl. math. comp., 154, 621-640, (2004) · Zbl 1060.65070 [10] Diethelm, K.; Ford, N.J.; Freed, A.D., Detailed error analysis for a fractional Adams method, Numerical algorithms, 36, 31-52, (2004) · Zbl 1055.65098 [11] Diethelm, K.; Ford, N.J.; Freed, A.D.; Luchko, Y., Algorithms for the fractional calculus: A selection of numerical methods, Comput. methods appl. mech. engrg., 194, 743-773, (2005) · Zbl 1119.65352 [12] K. Diethelm, N.J. Ford, Numerical analysis for distributed order differential equations, (2007) (submitted for publication) · Zbl 1159.65103 [13] Diethelm, K.; Luchko, Y., Numerical solution of linear multi-term initial value problems of fractional order, J. comput. anal. appl., 6, 243-263, (2004) · Zbl 1083.65064 [14] Edwards, J.T.; Ford, N.J.; Simpson, A.C., The numerical solution of multi-term fractional differential equations: systems of equations, J. comput. appl. math., 148, 401-418, (2002) · Zbl 1019.65048 [15] Ford, N.J.; Connolly, J.A., Comparison of numerical methods for fractional differential equations, Comm. pure appl. anal., 5, 289-307, (2006) · Zbl 1133.65115 [16] Lubich, C., Fractional linear multistep methods for Abel-Volterra integral equations of the second kind, Math. comp., 45, 463-469, (1985) · Zbl 0584.65090 [17] Lubich, C., Convolution quadrature and discretized operational calculus. I, Num. math., 52, 129-145, (1988) · Zbl 0637.65016 [18] Lubich, C., Convolution quadrature and discretized operational calculus. II, Num. math., 52, 413-425, (1988) · Zbl 0643.65094 [19] Lubich, C., A stability analysis of convolution quadratures for Abel-Volterra integral equations, IMA J. numer. anal., 6, 87-101, (1986) · Zbl 0587.65090 [20] Lubich, C., Convolution quadrature revisited, Bit, 44, 503-514, (2004) · Zbl 1083.65123 [21] Luchko, Y.; Gorenfl, R., An operational method for solving fractional differential equations with the Caputo derivative, Acta math. Vietnam., 24, 207-233, (1999) · Zbl 0931.44003 [22] A.R. Nkamnang, Diskretisierung von mehrgliedrigen Abelschen Integralgleichungen und gewöhnlichen Differentialgleichungen gebrochener Ordnung, Ph.D. Dissertation, Freie Universiät Berlin, 1998 [23] Podlubny, I., Fractional differential equations, (1999), Academic Press San Diego · Zbl 0918.34010 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.