×

zbMATH — the first resource for mathematics

The influence of slip condition on thin film flow of a fourth grade fluid by the homotopy analysis method. (English) Zbl 1165.76312
Summary: This paper provides an investigation regarding slip effects on thin film flow of a fourth grade fluid down a vertical cylinder. The nonlinear problem that arises is solved for both exact and HAM (homotopy analysis method) solutions. Exact and HAM solutions are also compared. Finally we briefly describe the flow characteristics to include the effects of emerging parameters.

MSC:
76A05 Non-Newtonian fluids
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Hayat, T.; Wang, Y.; Hutter, K., Hall effects on the unsteady hydromagnetic oscillatory flow of a second grade fluid, Internat. J. non-linear mech., 39, 1027-1037, (2004) · Zbl 1348.76187
[2] Fetecau, C.; Hayat, T.; Fetecau, C., Steady-state solutions for more simple flows of generalized burgers’ fluids, Internat J. non-linear mech., 41, 880-887, (2006) · Zbl 1160.76343
[3] Fetecau, C.; Fetecau, C., Unsteady flows of Oldroyd-B fluids in a channel of rectangular cross-section, Internat J. non-linear mech., 40, 1214-1219, (2005) · Zbl 1287.76045
[4] Fetecau, C.; Fetecau, C., Starting solutions for some unsteady unidirectional flows of a second grade fluid, Internat J. engrg. sci., 43, 781-789, (2005) · Zbl 1211.76032
[5] Tan, W.C.; Masuoka, T., Stokes first problem for second grade fluid in a porous half space with heated boundary, Internat J. non-linear mech., 40, 515-522, (2005) · Zbl 1349.76830
[6] Tan, W.C.; Masuoka, T., Stokes first problem for Oldroyd-B fluid in a porous half space, Phys. fluids., 17, 023101-023107, (2005) · Zbl 1187.76517
[7] Hayat, T.; Kara, A.H., A variational analysis of non-Newtonian flow in a rotating system, Internat J. comput. fluid dyn., 20, 157-162, (2006) · Zbl 1131.76007
[8] Hayat, T., Oscillatory solution in rotating flow of a johnson – segalman fluid, Z. angew. math. mech., 85, 449-456, (2005) · Zbl 1071.76063
[9] Hayat, T.; Ali, N., Peristaltically induced motion of MHD third grade fluid in a deformable tube, Phys. A, 370, 225-239, (2006)
[10] Hayat, T.; Sajid, M., Analytic solution for axisymmetric flow and heat transfer of a second grade fluid past a stretching sheet, Int. J. heat mass transfer, 50, 75-84, (2007) · Zbl 1104.80006
[11] Huang, P.; Li, Z., Study on thin film lubrication with second order fluid, J. tribology., 124, 547-552, (2002)
[12] Miladinova, S.; Lebon, G.; Toshev, E., Thin film flow of a power law liquid falling down an inclined plate, J. non-Newtonian fluid mech., 122, 69-78, (2004) · Zbl 1143.76341
[13] Zhang, R.; Li, X., Non-Newtonian effects on lubricant thin film flows, J. eng. math., 51, 1-13, (2005) · Zbl 1060.76015
[14] Gan, Q.Z.; Ji, L.Z., Lubrication theory for micropolar fluids and its application to a journal bearing with finite length, Appl. math. mech., 8, 655-665, (2006)
[15] Siddiqui, A.M.; Mahmood, R.; Ghori, Q.K., Homotopy perturbation method for thin film flow of a fourth grade fluid down a vertical cylinder, Phys. lett. A., 352, 404-410, (2006) · Zbl 1187.76622
[16] Siddiqui, A.M.; Ahmed, M.; Ghori, Q.K., Thin film flow of non-Newtonian fluids on a moving belt, Chaos solitons fractals, 33, 1006-1016, (2007) · Zbl 1129.76009
[17] Siddiqui, A.M.; Mahmood, R.; Ghori, Q.K., Homotopy perturbation method for thin film flow of a third grade fluid down an inclined plane, Chaos solitons fractals, 35, 140-147, (2008) · Zbl 1135.76006
[18] Chen, C.I., Non-linear stability characterization of the thin micropolar liquid film flowing down the inner surface of a rotating verical cylinder, Comm. nonlinear sci. numer. simm., 12, 760-775, (2007) · Zbl 1113.76038
[19] Sajid, M.; Hayat, T., The application of homotopy analysis method for thin film flow of a third order fluid, Chaos solitons fractals, 38, 506-515, (2008) · Zbl 1146.76588
[20] Hayat, T.; Sajid, M., On analytic solution of thin film flow of a fourth grade fluid down a veritcal cylinder, Phys. lett. A., 361, 316-322, (2007) · Zbl 1170.76307
[21] Sajid, M.; Hayat, T.; Asghar, S., Comparison between HAM and HPM solutions of thin film flows of non-Newtonian fluids on a moving belt, Nonlinear dyn., 50, 27-35, (2007) · Zbl 1181.76031
[22] Liao, S.J., Beyond perturbation: introduction to homotopy analysis method, (2003), Chapman & Hall/CRC Press Boca Raton
[23] Liao, S.J., On the homotopy analysis method for nonlinear problems, Appl. math. comput., 147, 499-513, (2004) · Zbl 1086.35005
[24] Hayat, T.; Khan, M.; Ayub, M., Couette and Poiseuille flows of an Oldroyd 6-constant fluid with magnetic field, J. math. anal. appl., 298, 225-244, (2004) · Zbl 1067.35074
[25] Hayat, T.; Khan, M.; Asghar, S., Homotopy analysis of MHD flows of an Oldroyd 8-constant fluid, Acta mech., 168, 213-232, (2004) · Zbl 1063.76108
[26] Yang, C.; Liao, S.J., On the explicit purely analytic solution of von karman swirling viscous flow, Comm. non-linear sci. numer. simul., 11, 83-93, (2006) · Zbl 1075.35059
[27] Liao, S.J., A new branch of solutions of boundary-layer flows over an impermeable stretched plate, Int. J. heat mass transfer, 48, 2529-2539, (2005) · Zbl 1189.76142
[28] Liao, S.J., An analytic solution of unsteady boundary-layer flows caused by an impulsively stretching plate, Comm. non-linear sci. numer. simul., 11, 326-339, (2006) · Zbl 1078.76022
[29] Sajid, M.; Hayat, T.; Asghar, S., On the analytic solution of steady flow of a fourth grade fluid, Phys. lett. A., 355, 18-24, (2006)
[30] Abbas, Z.; Sajid, M.; Hayat, T., MHD boundary layer flow of an upper-convected Maxwell fluid in a porous channel, Theor. comput. fluid dyn., 20, 229-238, (2006) · Zbl 1109.76065
[31] Weisstein, E.W., Cubic formula. from wolfram mathworld
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.