×

Elliptic integral solutions of spatial elastica of a thin straight rod bent under concentrated terminal forces. (English) Zbl 1163.74525

Summary: In this article, we solve in closed form a system of nonlinear differential equations modelling the elastica in space of a thin, flexible, straight rod, loaded by a constant thrust at its free end. Common linearizations of strength of materials are of course not applicable any way, because we analyze great deformations, even if not so large to go off the linear elasticity range. By passing to cylindrical coordinates \(\rho , \theta , z\), we earn a more tractable differential system evaluating \(\rho \) as elliptic function of polar anomaly \(\theta \) and also providing \(z\) through elliptic integrals of I and III kind. Deformed rod’s centerline is then completely described under both tensile or compressive load. Finally, the planar case comes out as a degeneracy, where the Bernoulli lemniscatic integral appears.

MSC:

74K10 Rods (beams, columns, shafts, arches, rings, etc.)
74G05 Explicit solutions of equilibrium problems in solid mechanics
PDFBibTeX XMLCite
Full Text: DOI Link

References:

[1] Fraser CG (1991) Euler’s investigation of the elastica. Centaurus 34:211–246 · Zbl 0752.01005 · doi:10.1111/j.1600-0498.1991.tb00695.x
[2] Basoco MA (1941) On the inflexional elastica. Am Math Monthly 48:303–309 · doi:10.2307/2302369
[3] Benvenuto E (1981) La scienza delle costruzioni e il suo sviluppo storico. Sansoni, Firenze
[4] Tricomi FG (1951) Funzioni ellittiche Zanichelli, Bologna · Zbl 0042.30901
[5] Schell W (1880) Theorie der Bewegung und der Kräfte, II, B. G. Teubner Druck u. Verlag, Leipzig (1981) · JFM 12.0635.02
[6] Burgatti P (1931) Teoria matematica dell’elasticità. Zanichelli, Bologna · JFM 57.1554.07
[7] Panayotounakos DE, Theocaris PS (1986) Exact solution for an approximate differential equation of a straight bar under conditions of non-linear equilibrium. Int J Non-linear Mech 21:421–429 · Zbl 0601.73049 · doi:10.1016/0020-7462(86)90024-7
[8] Chucheepsakul S, Phungpaigram B (2004) Elliptic integral solutions of variable -arc-length elastica under an inclined follower force. Z Angew Math Mech 84:29–38 · Zbl 1047.74036 · doi:10.1002/zamm.200410076
[9] Panayotounakos DE, Theocaris PS (1982) Exact solution of the non-linear differential equation concerning the elastic line of as traight rod due to terminal loading. Int J Non-linear Mech 17:395–402 · Zbl 0498.73042 · doi:10.1016/0020-7462(82)90009-9
[10] Goto Y, Yoshimitsu T, Obata M (1990) Elliptic integral solutions of plane elastica with axial and shear deformations. Int J Non-Linear Mech 26:375–390 · Zbl 0706.73039
[11] Sotiropoulu AB, Panayotounakos DE (2004) Exact parametric analytic solution of the elastica ODEs for bars including effects of the transverse deformation. Int J Non-Linear Mech 39:1555–1570 · Zbl 1348.74134 · doi:10.1016/j.ijnonlinmec.2003.09.004
[12] panayotounakos DE, Theocaris PS (1988) Analytic solutions for nonlinear differential equations describing the elastica of straight bars: theory. J Franklin Instit 325:621–633 · Zbl 0655.73028 · doi:10.1016/0016-0032(88)90037-3
[13] Lardner TJ (1985) A note on the elastica with large loads. Int J Solids Struct 21:21–26 · doi:10.1016/0020-7683(85)90102-7
[14] Dickey RW, Rosemann JJ (1993) Equilibria of the circular elastica under a uniform central force field. Q Appl Math 51:201–216
[15] Perline R (1998) The role of elastica in geometry. In: Wojcik D et al. (eds) Proceedings of the first non-orthodox school on nonlinearity and geometry, Luigi Bianchi days, Warsaw, September 21–28, 1995 Polish Scientific Publishers PWN,Warsaw, pp 359–364
[16] Golley BW (1984) Large deflections of bars bent through frictionless supports. Int J Non-Linear Mech 19:1–9 · Zbl 0529.73075 · doi:10.1016/0020-7462(84)90014-3
[17] Sun M-G (1992) Behaviour of a post-buckling riser vibrating due to effects of waves and current. Int J Non-Linear Mech 27:437–445 · Zbl 0825.73232 · doi:10.1016/0020-7462(92)90011-U
[18] Matsutani S (1998) Statistical mechanics of elastica on a plane: origin of the MKdV hierarchy. J Phys A 31(11):2705–2725 · Zbl 0919.35121 · doi:10.1088/0305-4470/31/11/017
[19] Stump DN, Fraser WB (2000) Multiple solutions for writhed rods: implications for DNA supercooling. Proc R Soc Lond A 456:455–467 · Zbl 0984.74044 · doi:10.1098/rspa.2000.0525
[20] Kida S (1981) A vortex filament moving without change of form. J Fluid Mech 112:397–409 · Zbl 0484.76030 · doi:10.1017/S0022112081000475
[21] Love AEH (1944) A treatise on the mathematical theory of elasticity, 4th edn (1927, reprint). Dover, New York, pp 1–32
[22] Dill EH (1992) Kirchhoff’s theory of rods. Arch Hist Exact Sci 44:1–23 · Zbl 0762.01012 · doi:10.1007/BF00379680
[23] da Fonseca AF, de Aguiar MAM (2003) Solving the boundary value problem for finite Kirchhoff rods. Physica D 181:53–69 · Zbl 1027.74039 · doi:10.1016/S0167-2789(03)00070-8
[24] Tobias I, Coleman BD, Olson WK (1994) The dependence of DNA tertiary structure on end conditions: theory and applications for topological transitions. J Chem Phys 101,(12) 10990
[25] Irwin T, Swigon D, Coleman BD (2000) Elastic stability of DNA configurations. I. General theory. Phys Rev E 61(1):747–758 · doi:10.1103/PhysRevE.61.747
[26] Coleman BD, Swigon D, Irwin T (2000) Elastic stability of DNA configurations. II. Supercoiled plasmids with self contact. Phys Rev E 61(1):759–770 · doi:10.1103/PhysRevE.61.759
[27] Lakes R (1995) Experimental methods for study of Cosserat elastic solids and other generalized elastic continua. In: Mühlhaus H (ed) Continuum models for materials with micro-structure. Wiley, New York, pp 1–22
[28] Antman S (1995) Nonlinear problems of elasticity. Springer-Verlag, New York · Zbl 0820.73002
[29] van der Heijden GHM (2001) The static deformation of a twisted elastic rod constrained to lie on a cylinder. Proc R Soc Lond A 457:695–715 · Zbl 1014.74043 · doi:10.1098/rspa.2000.0688
[30] Langer J, Singer DA (1984) The total squared curvature of closed curves. J Diff Geometry 20:1–22 · Zbl 0554.53013
[31] Langer J, Singer DA (1984) Knotted elastic curves in \(\mathbb{R}^3\) . J. Lond Math Soc 2, (30):512–520 · Zbl 0595.53001 · doi:10.1112/jlms/s2-30.3.512
[32] Langer J, Singer DA (1996) Lagrangian aspects of the Kirchhoff elastic rod. SIAM Rev 38(4):605–618 · Zbl 0859.73040 · doi:10.1137/S0036144593253290
[33] Hasimoto H (1971) Motion of a vortex filament and its relation to elastica. J Phys Soc Jpn 31:293–294 · doi:10.1143/JPSJ.31.293
[34] Landau L, Lifchitz E (1967) Théorie de l’élasticité. MIR, Moscow
[35] Appell P, Lacour E (1922) Fonctions elliptiques. Gauthier-Villars, Paris
[36] Cercignani C (1991) Spazio, tempo, movimento. Zanichelli, Bologna
[37] Byrd PF, Friedman MD (1971) Handbook of elliptic integrals for engineers and scientists, 2nd edn. Springer Verlag, New York · Zbl 0213.16602
[38] Loria G (1930) Curve piane speciali, I. Zanichelli, Bologna · JFM 56.0553.01
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.