zbMATH — the first resource for mathematics

Outflow boundary conditions for one-dimensional finite element modeling of blood flow and pressure waves in arteries. (English) Zbl 1163.74453
Summary: Flow and pressure waves, originating due to the contraction of the heart, propagate along the deformable vessels and reflect due to tapering, branching, and other discontinuities. The size and complexity of the cardiovascular system necessitate a multiscale approach, with upstream regions of interest (large arteries) coupled to reduced-order models of downstream vessels. Previous efforts to couple upstream and downstream domains have included specifying resistance and impedance outflow boundary conditions for the nonlinear one-dimensional wave propagation equations and iterative coupling between three-dimensional and one-dimensional numerical methods. We have developed a new approach to solve the one-dimensional nonlinear equations of blood flow in elastic vessels utilizing a space-time finite element method with GLS-stabilization for the upstream domain, and a boundary term to couple to the downstream domain. The outflow boundary conditions are derived following an approach analogous to the Dirichlet-to-Neumann (DtN) method. In the downstream domain, we solve simplified zero/one-dimensional equations to derive relationships between pressure and flow accommodating periodic and transient phenomena with a consistent formulation for different boundary condition types. In this paper, we also present a new boundary condition that accommodates transient phenomena based on a Green’s function solution of the linear, damped wave equation in the downstream domain.

74-XX Mechanics of deformable solids
76-XX Fluid mechanics
Full Text: DOI
[1] Hughes, T.J.R.; Lubliner, J., Math. biosci., 18, 161-170, (1973)
[2] Womersley, J.R., Phys. med. biol., 2, 178-187, (1957)
[3] Womersley, J.R., Phil. mag., 7, 199-221, (1955)
[4] Avolio, A.P., Med. biol. eng. comput., 18, 709-718, (1980)
[5] Stergiopulos, N.; Young, D.F.; Rogge, T.R., J. biomech., 25, 1477-1488, (1992)
[6] Olufsen, M.S., Am. J. physiol., 276, H257-268, (1999)
[7] Wan, J.; Steele, B.N.; Spicer, S.A.; Strohband, S.; Feijoo, G.R.; Hughes, T.J.R.; Taylor, C.A., Comput. meth. biomech. biomed. eng., 5, 195-206, (2002)
[8] Perktold, K.; Rappitsch, G., J. biomech., 28, 845-856, (1995)
[9] C.A. Taylor, T.J.R. Hughes, in: Proceedings of the 1998 World Congress of Biomechanics, Sapporo, Japan, 1998.
[10] Formaggia, L.; Gerbeau, J.F.; Nobile, F.; Quarteroni, A., Comput. meth. appl. mech. eng., 191, 561-582, (2001)
[11] Laguna, K.; Dublin, G.; Migliavacca, F.; Pietrabissa, R.; Pennati, G.; Veneziani, A.; Quarteroni, A., Biorheology, 39, 359-364, (2002)
[12] L. Formaggia, F. Nobile, A. Quarteroni, in: I. Babuska, P.G. Ciarlet, T. Miyoshi (Eds.), Lecture Notes in Computational Science and Engineering, vol. 19, Springer-Verlag, Berlin, 2002.
[13] B.N. Steele, C.A. Taylor, Proceedings of the 2003 ASME Summer Bioengineering Meeting, Key Biscayne, FL, 2003.
[14] I. Vignon, C.A. Taylor, Proceedings of the 2003 US National Congress on Computational Mechanics, Albuquerque, NM, 2003.
[15] I. Vignon, C.A. Taylor, Proceedings of the 2003 Summer Bioengineering Meeting, Key Biscayne, FL, 2003.
[16] D. Givoli, Numerical Methods for Problems in Infinite Domains, Elsevier, Amsterdam, 1992. · Zbl 0788.76001
[17] T.J.R. Hughes, Ph.D. Thesis, University of California, Berkeley, 1974.
[18] I. Vignon, Ph.D. Thesis, Stanford University, in preparation.
[19] Hughes, T.J.R., Comput. meth. appl. mech. eng., 127, 387-401, (1995)
[20] Patlashenko, I.; Givoli, D.; Barbone, P., Comput. meth. appl. mech. eng., 190, 5691-5718, (2001)
[21] W.W. Nichols, M.F. O’Rourke, McDonald’s Blood Flow in Arteries: Theoretical, Experimental and Clinical Principles, 4th ed., Oxford University Press, New York, 1998.
[22] Hughes, T.J.R.; Mallet, M., Comput. meth. appl. mech. eng., 58, 305-328, (1986)
[23] Hughes, T.J.R.; Franca, L.P.; Hulbert, G.M., Comput. meth. appl. mech. eng., 73, 173-189, (1989)
[24] M. Zamir, in: B.P. Series (Ed.), The Physics of Pulsatile Flow, Springer, New York, 2000. · Zbl 0978.76005
[25] J.R. Cebral, R. Lohner, O. Soto, P.J. Yim, in: Proceedings of the 2001 Summer Bioengineering Meeting, BED-vol. 50, 2001.
[26] Holdsworth, D.W.; Norley, C.J.D.; Frayne, R.; Steinman, D.A.; Rutt, B.K., Physiol. meas., 20, 219-240, (1999)
[27] Zhao, S.Z.; Xu, X.Y.; Hughes, A.D.; Thom, S.A.; Stanton, A.V.; Ariff, B.; Long, Q., J. biomech., 33, 975-984, (2000)
[28] B.T. Tang, C.P. Cheng, P.S. Tsao, C.A. Taylor, Proceedings of the 2003 Summer Bioengineering Meeting, Key Biscayne, FL, 2003.
[29] A.C. Guyton, Physiology of the Human Body, 6th ed., Saunders College Publishing, San Francisco, 1984.
[30] W.F.M. Ganong, Review of Medical Physiology, 17th ed., Appleton & Lange, Englewood Cliffs, 1995.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.