×

Poisson-Dirichlet distribution with small mutation rate. (English) Zbl 1163.60011

Summary: A large deviation principle is established for the Poisson-Dirichlet distribution when the mutation rate \(\theta \) converges to zero. The rate function is identified explicitly, and takes on finite values only on states that have finite number of alleles. This result is then applied to the study of the asymptotic behavior of the homozygosity, and the Poisson-Dirichlet distribution with selection. The latter shows that several alleles can coexist when selection intensity goes to infinity in a particular way as \(\theta \) approaches zero.

MSC:

60F10 Large deviations
92D10 Genetics and epigenetics
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Ferguson, T. S., A Bayesian analysis of some nonparametric problems, Ann. Statist., 1, 209-230 (1973) · Zbl 0255.62037
[2] Kingman, J. F.C., Random discrete distributions, J. Roy. Statist. Soc., 37, 1-22 (1975) · Zbl 0331.62019
[3] J.W. McCloskey, A model for the distribution of individuals by species in an environment, Ph.D. Thesis, Michigan State University, 1965; J.W. McCloskey, A model for the distribution of individuals by species in an environment, Ph.D. Thesis, Michigan State University, 1965
[4] Ethier, S. N.; Kurtz, T. G., The infinitely-many-neutral-alleles diffusion model, Adv. Appl. Probab., 13, 429-452 (1981) · Zbl 0483.60076
[5] Watterson, G. A.; Guess, H. A., Is the most frequent allele the oldest?, Theoret. Popul. Biol., 11, 141-160 (1977) · Zbl 0361.92017
[6] Griffiths, R. C., On the distribution of allele frequencies in a diffusion model, Theoret. Popul. Biol., 15, 140-158 (1979) · Zbl 0422.92015
[7] Joyce, P.; Krone, S. M.; Kurtz, T. G., Gaussian limits associated with the Poisson-Dirichlet distribution and the Ewens sampling formula, Ann. Appl. Probab., 12, 101-124 (2002) · Zbl 1010.62101
[8] Dawson, D.; Feng, S., Asymptotic behavior of Poisson-Dirichlet distribution for large mutation rate, Ann. Appl. Probab., 16, 2, 562-582 (2006) · Zbl 1119.92046
[9] Feng, S., Large deviations associated with Poisson-Dirichlet distribution and Ewens sampling formula, Ann. Appl. Probab., 17, 5-6, 1570-1595 (2007) · Zbl 1145.92025
[10] Feng, S.; Gao, F., Moderate deviations for Poisson-Dirichlet distribution, Ann. Appl. Probab., 18, 5, 1794-1824 (2008) · Zbl 1156.60018
[11] Sethraman, J.; Tiwari, R. C., Convergence of Dirichlet measures and the interpretation of their parameters, (Gupta, S. S.; Berger, J. O., Statistical Decision Theory and Related Topics III, vol. 2 (1982), Academic: Academic New York), 305-315
[12] Ethier, S. N., A class of infinite-dimensional diffusions occurring in population genetics, Indiana Univ. Math. J., 30, 925-935 (1981) · Zbl 0478.60084
[13] Ethier, S. N.; Griffiths, R. C., The transition function of a Fleming-Viot process, Ann. Probab., 21, 3, 1571-1590 (1993) · Zbl 0778.60038
[14] Arratia, R.; Barbour, A. D.; Tavaré, S., Logarithmic combinatorial structures: A probabilistic approach, (EMS Monographs in Mathematics (2003), European Mathematical Society(EMS): European Mathematical Society(EMS) Zürich) · Zbl 1044.60003
[15] Schmuland, B., A result on the infinitely many neutral alleles diffusion model, J. Appl. Probab., 28, 253-267 (1991) · Zbl 0727.60101
[16] Dembo, A.; Zeitouni, O., Large Deviations Techniques and Applications (1992), Jones and Bartlett Publishers: Jones and Bartlett Publishers Boston
[17] Watterson, G. A., The stationary distribution of the infinitely-many neutral alleles diffusion model, J. Appl. Probab., 13, 639-651 (1976) · Zbl 0356.92012
[18] Ewens, W. J., Mathematical Population Genetics, vol. I (2004), Springer-Verlag: Springer-Verlag New York · Zbl 1060.92046
[19] Watterson, G. A., Heterosis or neutrality, Genetics, 85, 789-814 (1977)
[20] Ethier, S. N.; Kurtz, T. G., Convergence to Fleming-Viot processes in the weak atomic topology, Stochastic Process. Appl., 54, 1-27 (1994) · Zbl 0817.60029
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.