×

Weber-Schafheitlin-type integrals with exponent 1. (English) Zbl 1163.33313

Authors’ abstract: Explicit formulae for Weber-Schafheitlin-type integrals with exponent 1 are derived. The results of these integrals are distributions on \(\mathbb R_{+}\).

MSC:

33C55 Spherical harmonics
33D15 Basic hypergeometric functions in one variable, \({}_r\phi_s\)
PDF BibTeX XML Cite
Full Text: DOI arXiv

References:

[1] Abramowitz M., National Bureau of Standards Applied Mathematics Series 55 (1964)
[2] Da\c{}browski L., J. Math. Phys. 39 pp 47– (1998) · Zbl 0916.47053
[3] Gradshteyn I. S., Table of Integrals, Series, and Products (1965) · Zbl 0918.65002
[4] Miller A. R., J. Comput. Appl. Math. 85 pp 271– (1997) · Zbl 0889.44004
[5] Miller A. R., J. Comput. Appl. Math. 118 pp 301– (2000) · Zbl 1015.33004
[6] Miller A. R., J. Comput. Appl. Math. 137 pp 77– (2001) · Zbl 0992.44001
[7] DOI: 10.1017/S0334270000012480 · Zbl 0915.33006
[8] Miroshin R. N., Math. Notes 70 pp 682– (2001) · Zbl 1023.33016
[9] Srivastava H. M., J. Reine Angew. Math. 309 pp 1– (1979)
[10] Watson G. N., A Treatise on the Theory of Bessel Functions, 2. ed. (1966) · Zbl 0174.36202
[11] Wheelon A. D., Tables of Summable Series and Integrals Involving Bessel Functions (1968) · Zbl 0187.12901
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.