×

zbMATH — the first resource for mathematics

Optimal dynamic reinsurance. (English) Zbl 1162.91408
Summary: We consider a classical surplus process where the insurer can choose a different level of reinsurance at the start of each year. We assume the insurer’s objective is to minimise the probability of ruin up to some given time horizon, either in discrete or continuous time. We develop formulae for ruin probabilities under the optimal reinsurance strategy, i.e. the optimal retention each year as the surplus changes and the period until the time horizon shortens. For our compound Poisson process, it is not feasible to evaluate these formulae, and hence determine the optimal strategies, in any but the simplest cases. We show how we can determine the optimal strategies by approximating the (compound Poisson) aggregate claims distributions by translated gamma distributions, and, alternatively, by approximating the compound Poisson process by a translated gamma process.

MSC:
91B30 Risk theory, insurance (MSC2010)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Insurance: Mathematics & Economics 24 pp 155– (1999)
[2] DOI: 10.2143/AST.23.2.2005094 · doi:10.2143/AST.23.2.2005094
[3] Practical Risk Theory for Actuaries (1993)
[4] Insurance: Mathematics & Economics 5 pp 169– (1986)
[5] Insurance: Mathematics & Economics 33 pp 147– (2003)
[6] DOI: 10.1017/S0515036100006334 · doi:10.1017/S0515036100006334
[7] DOI: 10.1214/aoap/1031863173 · Zbl 1021.60061 · doi:10.1214/aoap/1031863173
[8] Scandinavian Actuarial Journal pp 55– (2001)
[9] DOI: 10.1080/10920277.2005.10596229 · doi:10.1080/10920277.2005.10596229
[10] DOI: 10.1214/aoms/1177704970 · Zbl 0103.13302 · doi:10.1214/aoms/1177704970
[11] Numerical Recipes in Fortran 77 (1992) · Zbl 0778.65002
[12] DOI: 10.1017/S051503610001343X · doi:10.1017/S051503610001343X
[13] An Introduction to Mathematical Risk Theory (1979) · Zbl 0431.62066
[14] Insurance: Mathematics & Economics 19 pp 61– (1996)
[15] Insurance: Mathematics & Economics 7 pp 1– (1988)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.