×

zbMATH — the first resource for mathematics

A note on the dividends-penalty identity and the optimal dividend barrier. (English) Zbl 1162.91374
Summary: For a general class of risk models, the dividends-penalty identity is derived by probabilistic reasoning. This identity is the key for understanding and determining the optimal dividend barrier, which maximizes the difference between the expected present value of all dividends until ruin and the expected discounted value of a penalty at ruin (which is typically a function of the deficit at ruin). As an illustration, the optimal barrier is calculated in two classical models, for different penalty functions and a variety of parameter values.

MSC:
91B30 Risk theory, insurance (MSC2010)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Transactions of the XVth International Congress of Actuaries 2 pp 433– (1957)
[2] Insurance: Mathematics and Economics 37 pp 216– (2005)
[3] Mathematical Methods in Risk Theory (1970) · Zbl 0209.23302
[4] Insurance: Mathematics and Economics 37 pp 324– (2005)
[5] Insurance: Mathematics and Economics 33 pp 551– (2003)
[6] Insurance: Mathematics and Economics 38 pp 57– (2006)
[7] Insurance: Mathematics and Economics 35 pp 697– (2004)
[8] DOI: 10.1017/S0515036100014392 · doi:10.1017/S0515036100014392
[9] North American Actuarial Journal 10 pp 76– (2006)
[10] North American Actuarial Journal 8 pp 1– (2004)
[11] DOI: 10.1080/10920277.2005.10596197 · Zbl 1085.62508 · doi:10.1080/10920277.2005.10596197
[12] North American Actuarial Journal 2 pp 48– (1998)
[13] DOI: 10.1287/opre.20.1.37 · Zbl 0236.90079 · doi:10.1287/opre.20.1.37
[14] DOI: 10.1017/S0515036100013878 · doi:10.1017/S0515036100013878
[15] DOI: 10.1080/10920277.2006.10596258 · doi:10.1080/10920277.2006.10596258
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.