×

zbMATH — the first resource for mathematics

On the Abadie and Guignard constraint qualifications for mathematical programmes with vanishing constraints. (English) Zbl 1162.90560
Summary: We consider a special class of optimization problems that we call a Mathematical Programme with Vanishing Constraints. It has a number of important applications in structural and topology optimization, but typically does not satisfy standard constraint qualifications like the linear independence and the Mangasarian-Fromovitz constraint qualification. We therefore investigate the Abadie and Guignard constraint qualifications in more detail. In particular, it follows from our results that also the Abadie constraint qualification is typically not satisfied, whereas the Guignard constraint qualification holds under fairly mild assumptions for our particular class of optimization problems.

MSC:
90C30 Nonlinear programming
90C33 Complementarity and equilibrium problems and variational inequalities (finite dimensions) (aspects of mathematical programming)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Abadie JM, Nonlinear Programming pp 21– (1967)
[2] Achtziger W, Math. Program. (to appear)
[3] Bazaraa MS, Foundations of Optimization. Vol. 122 of Lecture Notes in Economics and Mathematical Systems (1976)
[4] DOI: 10.1080/02331939508844048 · doi:10.1080/02331939508844048
[5] DOI: 10.1007/s10957-004-1176-x · Zbl 1090.90200 · doi:10.1007/s10957-004-1176-x
[6] DOI: 10.1080/02331930500342591 · Zbl 1147.90397 · doi:10.1080/02331930500342591
[7] DOI: 10.1007/s11228-006-0033-5 · Zbl 1149.90143 · doi:10.1007/s11228-006-0033-5
[8] DOI: 10.1137/0120021 · Zbl 0217.57501 · doi:10.1137/0120021
[9] DOI: 10.1137/0307016 · Zbl 0182.53101 · doi:10.1137/0307016
[10] Luo Z-Q, Mathematical Programs with Equilibrium Constraints (1996)
[11] Mangasarian OL, Nonlinear Programming (1994)
[12] DOI: 10.1007/b98874 · Zbl 0930.65067 · doi:10.1007/b98874
[13] Outrata JV, Nonsmooth Approach to Optimization Problems with Equilibrium Constraints (1998)
[14] DOI: 10.1023/A:1008656806889 · Zbl 1040.90560 · doi:10.1023/A:1008656806889
[15] DOI: 10.1137/1015075 · Zbl 0255.90049 · doi:10.1137/1015075
[16] Rockafellar RT, Convex Analysis (1970)
[17] Stoer J, Vol. 163 of Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen (1970)
[18] DOI: 10.1137/S1052623497321882 · Zbl 0967.90092 · doi:10.1137/S1052623497321882
[19] DOI: 10.1016/j.jmaa.2004.10.032 · Zbl 1112.90062 · doi:10.1016/j.jmaa.2004.10.032
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.