zbMATH — the first resource for mathematics

Thermal analysis of micro-channel heat exchangers with two-phase flow using FEM. (English) Zbl 1162.76398
Summary: To analyze two-phase flow in micro-channel heat exchangers used for high flux micro-electronics cooling and to obtain performance parameters such as thermal resistance, pressure drop, etc. Both uniform and non-uniform micro-channel base heat fluxes are considered.
Energy balance equations are developed for two-phase flow in micro-channels and are solved using the finite element method (FEM). A unique ten noded element is used for the channel descritization. The formulation also automatically takes care of single-phase flow in the micro-channel.
Micro-channel wall temperature distribution, thermal resistance and the pressure drop for various uniform micro-channel base heat fluxes are obtained, both for single- and two-phase flows in the micro-channel. Results are compared against data available in the literature. The wall temperature distribution for a particular case of non-uniform base heat flux is also obtained.
The analysis is done for a single micro-channel and the effects of multiple or stacked channels are not considered. The analysis needs to be carried out for higher heat fluxes and the validity of the correlation needs to be ascertained through experimentation. Effects of flow mal-distribution in multiple channels, etc. need to be considered.
The role of two-phase flow in micro-channels for high flux micro-electronics cooling in reducing the thermal resistance is demonstrated. The formulation is very useful for the thermal design and management of microchannels with both single- and two-phase flows for either uniform or non-uniform base heat flux.

76T10 Liquid-gas two-phase flows, bubbly flows
76M10 Finite element methods applied to problems in fluid mechanics
80A20 Heat and mass transfer, heat flow (MSC2010)
Full Text: DOI
[1] DOI: 10.1016/0017-9310(69)90141-0 · doi:10.1016/0017-9310(69)90141-0
[2] Jiang, L., Wong, M. and Zohar, Y. (2001), ”Forced convection boiling in a microchannel heat sink”,J. Microelectromech. Syst., Vol. 10 No. 1, pp. 1080-7.
[3] DOI: 10.1016/S1359-4311(96)00071-3 · doi:10.1016/S1359-4311(96)00071-3
[4] DOI: 10.1115/1.2826027 · doi:10.1115/1.2826027
[5] DOI: 10.1115/1.1602708 · doi:10.1115/1.1602708
[6] DOI: 10.1016/0017-9310(95)00327-4 · doi:10.1016/0017-9310(95)00327-4
[7] DOI: 10.1016/S0017-9310(02)00106-0 · Zbl 1006.76502 · doi:10.1016/S0017-9310(02)00106-0
[8] Qu, W. and Mudawar, I. (2003a), ”Measurement and prediction of pressure drop in two-phase micro-channel heat sinks”,International Journal of Heat and Mass Transfer, Vol. 46, pp. 2738-53. · doi:10.1016/S0017-9310(03)00044-9
[9] DOI: 10.1016/S0017-9310(03)00042-5 · doi:10.1016/S0017-9310(03)00042-5
[10] DOI: 10.1016/S0017-9310(03)00041-3 · doi:10.1016/S0017-9310(03)00041-3
[11] DOI: 10.1016/j.ijheatmasstransfer.2003.12.006 · doi:10.1016/j.ijheatmasstransfer.2003.12.006
[12] DOI: 10.1108/09615530110364097 · Zbl 1007.76042 · doi:10.1108/09615530110364097
[13] DOI: 10.1115/1.2824274 · doi:10.1115/1.2824274
[14] DOI: 10.1002/aic.690220105 · doi:10.1002/aic.690220105
[15] DOI: 10.1016/S0017-9310(02)00223-5 · Zbl 1008.76519 · doi:10.1016/S0017-9310(02)00223-5
[16] DOI: 10.1109/EDL.1981.25367 · doi:10.1109/EDL.1981.25367
[17] DOI: 10.1115/1.2911393 · doi:10.1115/1.2911393
[18] DOI: 10.1016/S0894-1777(02)00107-3 · doi:10.1016/S0894-1777(02)00107-3
[19] Zhimin, W. and Fah, C.K. (1997), ”The optimum thermal design of microchannel heat sinks”,IEEE/CPMT Electronic Packaging Technology Conference, pp. 123-9. · doi:10.1109/EPTC.1997.723898
[20] DOI: 10.1016/0017-9310(94)90103-1 · doi:10.1016/0017-9310(94)90103-1
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.