×

zbMATH — the first resource for mathematics

Forced convection heat transfer from solder balls on a printed circuit board using the characteristic based split (CBS) scheme. (English) Zbl 1162.76392
Summary: We model forced convection heat transfer over arrays of solder balls numerically. The characteristic based split (CBS) scheme has been used to solve the incompressible Navier-Stokes equations on unstructured meshes.
The results show an increase in heat transport with increase in Reynolds numbers. A significant change in heat transfer is also noticed with change in angle of attack. The presented results will be useful in designing cooling systems for electronic components.

MSC:
76R10 Free convection
76M10 Finite element methods applied to problems in fluid mechanics
80A20 Heat and mass transfer, heat flow (MSC2010)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] DOI: 10.1016/0021-9991(67)90037-X · Zbl 0149.44802 · doi:10.1016/0021-9991(67)90037-X
[2] Comini, G. and Giudice, S. Del (1972), ”Finite element solutions incompressible Navier-Stokes equations”, Num. Heat Transfer, Part A, Vol. 5, pp. 463-78.
[3] DOI: 10.1017/S0022112090000477 · doi:10.1017/S0022112090000477
[4] DOI: 10.1016/S0017-9310(99)00133-7 · Zbl 1042.76575 · doi:10.1016/S0017-9310(99)00133-7
[5] DOI: 10.1002/(SICI)1097-0363(19971115)25:9<985::AID-FLD596>3.0.CO;2-C · Zbl 0898.76057 · doi:10.1002/(SICI)1097-0363(19971115)25:9<985::AID-FLD596>3.0.CO;2-C
[6] DOI: 10.1016/0017-9310(95)00153-Z · doi:10.1016/0017-9310(95)00153-Z
[7] DOI: 10.1002/nme.447 · Zbl 1098.76581 · doi:10.1002/nme.447
[8] DOI: 10.1108/09615539810244067 · Zbl 0951.76042 · doi:10.1108/09615539810244067
[9] DOI: 10.1002/(SICI)1097-0363(19990915)31:1<159::AID-FLD961>3.0.CO;2-O · Zbl 0985.76076 · doi:10.1002/(SICI)1097-0363(19990915)31:1<159::AID-FLD961>3.0.CO;2-O
[10] DOI: 10.1109/6144.926383 · doi:10.1109/6144.926383
[11] DOI: 10.1002/nme.434 · Zbl 1008.76040 · doi:10.1002/nme.434
[12] DOI: 10.1002/nme.712 · Zbl 1072.76040 · doi:10.1002/nme.712
[13] DOI: 10.1002/fld.682 · Zbl 1067.76572 · doi:10.1002/fld.682
[14] DOI: 10.1002/nme.1620340218 · Zbl 0825.76435 · doi:10.1002/nme.1620340218
[15] DOI: 10.1063/1.2163685 · Zbl 0181.54801 · doi:10.1063/1.2163685
[16] DOI: 10.1109/6144.926382 · doi:10.1109/6144.926382
[17] DOI: 10.1109/6144.926381 · doi:10.1109/6144.926381
[18] DOI: 10.1108/02644400110386984 · Zbl 1020.76043 · doi:10.1108/02644400110386984
[19] DOI: 10.1115/1.3679912 · doi:10.1115/1.3679912
[20] DOI: 10.1016/S0017-9310(02)00180-1 · Zbl 1032.76680 · doi:10.1016/S0017-9310(02)00180-1
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.