zbMATH — the first resource for mathematics

Exact solutions for electro-osmotic flow of viscoelastic fluids in rectangular micro-channels. (English) Zbl 1162.76007
Summary: We investigate transient electro-osmotic flow of viscoelastic fluids in rectangular micro-channels. The general twofold series solution for velocity distribution of electro-osmotic flow of viscoelastic fluids with generalized fractional Oldroyd-B constitutive model is obtained by using finite Fourier and Laplace transforms. Under three limiting cases, the generalized Oldroyd-B model simplifies to Newtonian model, fractional Maxwell model and generalized second-grade model, where all the explicit exact solutions for velocity distribution are found through the discrete Laplace transform of sequential fractional derivatives. These exact solutions may predict the flow behavior of viscoelastic biological fluids in bioMEMS and lab-on-a-chip devices, and thus could benefit the design of these devices.

76A10 Viscoelastic fluids
76W05 Magnetohydrodynamics and electrohydrodynamics
Algorithm 368
Full Text: DOI
[1] Masliyah, J.H.; Bhattacharjee, S., Electrokinetic and colloid transport phenomena, (2006), Wiley Interscience Hoboken, NJ
[2] Wainright, A.; Nguyen, U.T.; Bjornson, T.; Boone, T.D., Preconcentration and separation of double-stranded DNA fragments by electrophoresis in plastic microfluidic devices, Electrophoresis, 24, 3784-3792, (2003)
[3] Whitesides, G.M., The origins and the future of microfluidics, Nature, 442, 368-373, (2006)
[4] Herr, A.E.; Molho, J.I.; Santiago, J.G.; Mungal, M.G.; Kenny, T.W.; Garguilo, M.G., Electroosmotic capillary flow with nonuniform zeta potential, Anal. chem., 72, 1053-1057, (2000)
[5] Rice, C.L.; Whitehead, R., Electrokinetic flow in a narrow cylindrical capillary, J. phys. chem., 69, 4017-4024, (1965)
[6] Santiago, J.G., Electroosmotic flows in microchannels with finite inertial and pressure forces, Anal. chem., 73, 2353-2365, (2001)
[7] Yang, R.J.; Fu, L.M.; Lin, Y.C., Electroosmotic flow in microchannels, J. colloid interface sci., 239, 98-105, (2001)
[8] Devasenathipathy, S.; Santiago, J.G.; Takehara, K., Particle tracking techniques for electrokinetic microchannel flows, Anal. chem., 74, 3704-3713, (2002)
[9] Pikal, M.J.; Shah, S., Transport mechanisms in iontophoresis: III. an experimental study of the contributions of electroosmotic flow and permeability change in transport of low and high molecular weight solutes, Pharm. res., 7, 222-229, (1990)
[10] Ross, D.; Johnson, T.J.; Locascio, L.E., Imaging of electroosmotic flow in plastic microchannels, Anal. chem., 73, 2509-2515, (2001)
[11] Sinton, D.; Li, D., Electroosmotic velocity profiles in microchannels, Colloids surf., A, 222, 273-283, (2003)
[12] Dutta, P.; Beskok, A.; Warburton, T.C., Numerical simulation of mixed electroosmotic/pressure driven microflows, Numer. heat transfer, part A, 41, 131-148, (2002)
[13] Hu, Y.; Werner, C.; Li, D., Electrokinetic transport through rough microchannels, Anal. chem., 75, 5747-5758, (2003)
[14] Patankar, N.A.; Hu, H.H., Numerical simulation of electroosmotic flow, Anal. chem., 70, 1870-1881, (1998)
[15] Ren, L.; Li, D., Electroosmotic flow in heterogeneous microchannels, J. colloid interface sci., 243, 255-261, (2001)
[16] Podlubny, I., Fractional differential equations, (1999), Academic Press San Diego · Zbl 0918.34010
[17] Hilfer, R., Applications of fractional calculus in physics, (2000), World Scientific Press Singapore · Zbl 0998.26002
[18] Tan, W.; Xian, F.; Wei, L., An exact solution of unsteady Couette flow of generalized second grade fluid, Chin. sci. bull., 47, 1783-1785, (2002)
[19] Tan, W.; Xu, M., Plane surface suddenly set in motion in a viscoelastic fluid with fractional Maxwell model, Acta mech. sin./lixue xuebao, 18, 342-349, (2002)
[20] Tan, W.; Pan, W.; Xu, M., A note on unsteady flows of a viscoelastic fluid with the fractional Maxwell model between two parallel plates, Int. J. non linear mech., 38, 645-650, (2003) · Zbl 1346.76009
[21] Hayat, T.; Nadeem, S.; Asghar, S., Periodic unidirectional flows of a viscoelastic fluid with the fractional Maxwell model, Appl. math. comput., 151, 153-161, (2004) · Zbl 1161.76436
[22] Magin, R.L., Fractional calculus in bioengineering, part 3, Crit. rev. biomed. eng., 32, 195-377, (2004)
[23] Ali, S. Hyder; Khan, M.; Qi, H., Exact solutions for a viscoelastic fluid with the generalized Oldroyd-B model, Nonlinear anal.: real world applications, (2008)
[24] Khan, M.; Ali, S. Hyder; Qi, H., Some accelerated flows for a generalized Oldroyd-B fluid, Nonlinear anal.: real world applications, (2007) · Zbl 1167.76309
[25] Khan, M.; Hayat, T.; Asghar, S., Exact solution for MHD flow of a generalized Oldroyd-B fluid with modified darcy’s law, Int. J. eng. sci., 44, 333-339, (2006) · Zbl 1213.76024
[26] Vieru, D.; Fetecau, C.; Fetecau, C., Flow of a viscoelastic fluid with the fractional Maxwell model between two side walls perpendicular to a plate, Appl. math. comput., 200, 459-464, (2008) · Zbl 1158.76005
[27] Hernandez-Jimenez, A.; Hernandez-Santiago, J.; Macias-Garca, A.; Sanchez-Gonzalez, J., Relaxation modulus in PMMA and PTFE Fitting by fractional Maxwell model, Polym. test., 21, 325-331, (2002)
[28] Hayat, T.; Khan, M.; Asghar, S., On the MHD flow of fractional generalized burgers’ fluid with modified darcy’s law, Acta mech. sin./lixue xuebao, 23, 257-261, (2007) · Zbl 1202.76155
[29] Khan, M.; Maqbool, K.; Hayat, T., Influence of Hall current on the flows of a generalized Oldroyd-B fluid in a porous space, Acta mech., 184, 1-13, (2006) · Zbl 1096.76061
[30] Khan, M.; Nadeem, S.; Hayat, T.; Siddiqui, A.M., Unsteady motions of a generalized second-grade fluid, Math. comput. model., 41, 629-637, (2005) · Zbl 1080.76007
[31] Joseph, D.D., Fluid dynamics of viscoelastic liquids, (1990), Springer-Verlag New York · Zbl 0698.76002
[32] Debnath, L.; Bhatta, D., Integral transforms and their applications, (2007), Taylor & Francis Group New York
[33] Li, D., Electrokinetics in microfluidics, (2004), Elsevier Academic Press
[34] Deen, W.M., Analysis of transport phenomena, (1998), Oxford University Press New York
[35] Durbin, F., Numerical inversion of Laplace transforms: an efficient improvement to dubner and abate’s method, Comput. J., 17, 371-376, (1974) · Zbl 0288.65072
[36] Stehfest, H., Algorithm 368: numerical inversion of Laplace transforms [D5], Commun. ACM, 13, 47-49, (1970)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.