# zbMATH — the first resource for mathematics

On a new extended finite element method for dislocations: Core enrichment and nonlinear formulation. (English) Zbl 1162.74464
Summary: A recently developed finite element method for the modeling of dislocations is improved by adding enrichments in the neighborhood of the dislocation core. In this method, the dislocation is modeled by a line or surface of discontinuity in two or three dimensions. The method is applicable to nonlinear and anisotropic materials, large deformations, and complicated geometries. Two separate enrichments are considered: a discontinuous jump enrichment and a singular enrichment based on the closed-form, infinite-domain solutions for the dislocation core. Several examples are presented for dislocations constrained in layered materials in 2D and 3D to illustrate the applicability of the method to interface problems.

##### MSC:
 74S05 Finite element methods applied to problems in solid mechanics 74A60 Micromechanical theories
XFEM
Full Text:
##### References:
 [1] Acharya, A., A model of crystal plasticity based on the theory of continuously distributed dislocations, J. mech. phys. solids, 49, 4, 761-784, (2001) · Zbl 1017.74010 [2] Amodeo, R.J.; Ghoniem, N.M., Dislocation dynamics. i. A proposed methodology for deformation micromechanics, Phys. rev. B, 41, 6958-6967, (1990) [3] Belytschko, T.; Black, T., Elastic crack growth in finite elements with minimal remeshing, Int. J. numer. methods eng., 45, 601-620, (1999) · Zbl 0943.74061 [4] Belytschko, T.; Gracie, R., On XFEM applications to dislocations in problems with interfaces, Int. J. plasticity., 23, 1721-1738, (2007) · Zbl 1126.74046 [5] Belytschko, T.; Liu, W.K.; Moran, B., Nonlinear finite elements for continua and structures, (2000), Wiley New York · Zbl 0959.74001 [6] Belytschko, T.; Moës, N.; Usui, S.; Parimi, C., Arbitrary discontinuities in finite elements, Int. J. numer. methods eng., 50, 993-1013, (2001) · Zbl 0981.74062 [7] Blanckenhagen, B.; Gumbsch, P.; Arzt, E., Dislocation sources and the flow stress of polycrystalline thin metal films, Philos. mag. lett., 83, 1, 1-8, (2003) [8] Bulatov, V.V.; Cai, W., Computer simulations of dislocations, (2006), Oxford University Press Oxford · Zbl 1119.74001 [9] Cai, W.; Arsenlis, A.; Weinberger, C.R.; Bulatov, V.V., A non-singular continuum theory of dislocations, J. mech. phys. solids, 54, 3, 561-587, (2006) · Zbl 1120.74329 [10] Chessa, J.; Smolinski, P.; Belytschko, T., The extended finite element method (XFEM) for solidification problems, Int. J. numer. methods eng., 53, 1959-1977, (2002) · Zbl 1003.80004 [11] Chessa, J.; Wang, H.; Belytschko, T., On the construction of blending elements for local partition of unity enriched finite elements, Int. J. numer. methods eng., 57, 1015-1038, (2003) · Zbl 1035.65122 [12] Chopp, D.L., Some improvements of the fast marching method, SIAM J. sci comput., 23, 230-244, (2001) · Zbl 0991.65105 [13] Denoual, C., Dynamic dislocation modeling by combining Peierls Nabarro and Galerkin methods, Phys. rev. B, 70, 2, 24106, (2004) [14] Denoual, C., Modeling dislocation by coupling peierls – nabarro and element-free Galerkin methods, Comput. methods appl. mech. eng., 196, 13-16, 1915-1923, (2007) · Zbl 1173.74468 [15] Dundurs, J.; Sendeckyj, G.P., Behavior of an edge dislocation near a bimetallic interface, J. appl. phys., 36, 10, 3353-3354, (1965) [16] Eshelby, J.D., The force on an elastic singularity, Philos. trans. R. soc. London ser. A, math. phys. sci., 244, 244, 87-112, (1951) · Zbl 0043.44102 [17] Fivel, M.C.; Gosling, T.J.; Canova, G.R., Implementing image stresses in a 3d dislocation simulation, Modelling and simulation mater. sci. eng., 4, 6, 581-596, (1996) [18] Freund, L.B., A criterion for arrest of a threading dislocation in a strained epitaxial layer due to an interface misfit dislocation in its path, J. appl. phys., 68, 2073, (1990) [19] Ghoniem, N.M.; Han, X., Dislocation motion in anisotropic multilayer materials, Philos. mag., 85, 24, 2809-2830, (2005) [20] Gracie, R.; Ventura, G.; Belytschko, T., A new fast method for dislocations based on interior discontinuities, Int. J. numer. methods eng., 69, 423-441, (2007) · Zbl 1194.74402 [21] Gravouil, A.; Moes, N.; Belytschko, T., Non-planar 3D crack growth by the extended finite element and level sets. part II: level set update, Int. J. numer. methods eng., 53, 2269-2586, (2002) · Zbl 1169.74621 [22] Groh, S.; Devincre, B.; Kubin, L.B.; Roos, A.; Feyel, F.; Chaboche, J.L., Dislocations and elastic anisotropy in heteroepitaxial metallic thin films, Philos. mag. lett., 83, 5, 303-313, (2003) [23] Han, X.; Ghoniem, N.M., Stress field and interaction forces of dislocations in anisotropic multilayer thin films, Philos. mag., 85, 11, 1205-1225, (2005) [24] Han, C.S.; Hartmaier, A.; Gao, H.; Huang, Y., Discrete dislocation dynamics simulations of surface induced size effects in plasticity, Mater. sci. eng. A, 415, 1-2, 225-233, (2006) [25] Head, A.K., Edge dislocations in inhomogeneous media, Proc. phys. soc. sec. B, 66, 9, 793-801, (1953) · Zbl 0050.44901 [26] Hirth, J.P., Lothe, J., 1982. Theory of Dislocations, second ed., vol. 1. Wiley, New York. · Zbl 1365.82001 [27] Hirth, J.P.; Rhee, M.; Zbib, H., Modeling of deformation by a 3D simulation of multiple curved dislocations, J. comput. aided mater. des., 3, 1, 164-166, (1996) [28] Koehler, J.S., Attempt to design a strong solid, Phys. rev. B, 2, 2, 547-551, (1970) [29] Kubin, L.P.; Canova, G., The modelling of dislocation patterns, Scr. metall. mater., 27, 8, 957-962, (1992) [30] Lemarchand, C.; Devincre, B.; Kubin, L.P., Homogenization method for a discrete-continuum simulation of dislocation dynamics, J. mech. phys. solids, 49, 9, 1969-1982, (2001) · Zbl 0998.74063 [31] Moës, N.; Dolbow, J.; Belytschko, T., A finite element method for crack growth without remeshing, Int. J. numer. methods eng., 46, 131-150, (1999) · Zbl 0955.74066 [32] Moran, B.; Shih, C.F., A general treatment of crack tip contour integrals, Int. J. fracture, 35, 4, (1987) [33] Peach, M.; Koehler, J.S., The forces exerted on dislocations and the stress fields produced by them, Phys. rev., 80, 3, 436-439, (1950) · Zbl 0039.23301 [34] Rao, S.L.; Hazzledine, P.M., Atomistic simulations of dislocation-interface interactions in the cu – ni system, Philos. mag. A, 80, 9, 2011-2040, (2000) [35] Roy, A.; Acharya, A., Finite element approximation of field dislocation mechanics, J. mech. phys. solids, 53, 1, 143-170, (2005) · Zbl 1134.74413 [36] Schwarz, K.W., Simulation of dislocations on the mesoscopic scale. i. methods and examples, J. appl. phys., 85, 1, 108-119, (1999) [37] Schwarz, K.W.; Tersoff, J., Interaction of threading and misfit dislocations in a strained epitaxial layer, Appl. phys. lett., 69, 1220-1222, (1996) [38] Stolarska, M.; Chopp, D.L.; Moës, N.; Belytschko, T., Modelling crack growth by level sets in the extended finite element method, Int. J. numer. methods eng., 51, 8, 943-960, (2001) · Zbl 1022.74049 [39] van der Giessen, E.; Needleman, A., Discrete dislocation plasticity: a simple planar model, Modelling simulation mater. sci. eng., 3, 689-735, (1995) [40] van der Giessen, E.; Needleman, A., Dislocation plasticity effects on interfacial fracture, Interface sci., 11, 3, 291-301, (2003) [41] Ventura, G.; Moran, B.; Belytschko, T., Dislocations by partition of unity, Int. J. numer. methods eng., 62, 11, 1463-1487, (2005) · Zbl 1078.74665 [42] Volterra, V., Sur l’équilibre des corps lastiques multiplement connexes, Ann. sci. norm. super. sr. 3, 24, 401-517, (1907) · JFM 38.0814.01 [43] Wang, Y.U.; Jin, Y.M.; Cuitino, A.M.; Khachaturyan, A.G., Nanoscale phase field microelasticity theory of dislocations: model and 3d simulations, Acta mater., 49, 10, 1847-1857, (2001) [44] Wang, Y.U.; Jin, Y.M.; Cuitino, A.M.; Khachaturyan, A.G., Nanoscale phase field microelasticity theory of dislocations: model and 3D simulations, Acta mater., 49, 10, 1847-1857, (2001) [45] Xiang, Y.; Cheng, L.T.; Srolovitz, D.J.; Weinan, E., A level set method for dislocation dynamics, Acta mater., 51, 18, 5499-5518, (2003) [46] Xiang, Y.; Srolovitz, D.J.; Cheng, L.T.; Weinan, E., Level set simulations of dislocation-particle bypass mechanisms, Acta mater., 52, 7, 1745-1760, (2004)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.