zbMATH — the first resource for mathematics

Meshfree simulations of thermo-mechanical ductile fracture. (English) Zbl 1162.74052
Summary: We use a meshfree method to simulate thermo-mechanical ductile fracture under finite deformation. A Galerkin meshfree formulation incorporating the Johnson-Cook damage model is implemented in numerical computations. We are interested in the simulation of thermo-mechanical effects on ductile fracture under large scale yielding. A rate-form adiabatic split is proposed in the constitutive update. Meshfree techniques, such as the visibility criterion, are used to modify the particle connectivity based on evolving crack surface morphology. The numerical results have shown that the proposed meshfree algorithm works well, the meshfree crack adaptivity and re-interpolation procedure is versatile in numerical simulations, and it enables us to predict thermo-mechanical effects on ductile fracture.

74S30 Other numerical methods in solid mechanics (MSC2010)
74R20 Anelastic fracture and damage
74F05 Thermal effects in solid mechanics
Full Text: DOI
[1] Armero F, Simo JC (1992) A new unconditionally stable fractional step method for non-linear coupled thermomechanical problems. Int J for Numer Meth Eng 35:737–766 · Zbl 0784.73085 · doi:10.1002/nme.1620350408
[2] Armero F, Simo JC (1993) A priori stability estimates and unconditionally stable product formula algorithms for nonlinear coupled thermoplasticity. Int J Plasticity 9:749–782 · Zbl 0791.73026 · doi:10.1016/0749-6419(93)90036-P
[3] Batra RC, Chen L (2001) Effect of viscoplastic relations on the instability strain, shear band initation strain, the strain corresponding to the minimum shear band spacing and the band width in a thermoviscoplastic material. Int J Plasticity 17:1465–1489 · Zbl 1011.74010 · doi:10.1016/S0749-6419(01)00004-3
[4] Belytschko T, Lu YY, Gu L (1994a) Element Free Galerkin Methods. Int J Numer Meth Eng 37:229–256 · Zbl 0796.73077 · doi:10.1002/nme.1620370205
[5] Belytschko T, Lu YY, Gu L (1994b) Fracture and Crack Growth by Element-free Galerkin Methods. Model Simul Sci Comput Eng 2:519–534 · doi:10.1088/0965-0393/2/3A/007
[6] Belytschko T, Lu YY, Gu L (1995a) Element-free Galerkin Methods for Static and Dynamic Fracture. Int J Solids Struct 32:2547–2570 · Zbl 0918.73268 · doi:10.1016/0020-7683(94)00282-2
[7] Belytschko T, Lu YY, Gu L (1995b) Crack propagation by Element-free Galerkin Methods. Eng Fracture Mech 51:295–315 · doi:10.1016/0013-7944(94)00153-9
[8] Belytschko T, Krongauz Y, Organ D, Fleming M, Krysl P (1996a) Meshless methods: An Overview and Recent Developments. Comput Meth Appl Mech Eng 139:3–48 · Zbl 0891.73075 · doi:10.1016/S0045-7825(96)01078-X
[9] Belytschko T, Krongauz Y, Fleming M, Organ D, Liu WK (1996b) Smoothing and accelerated computations in the element free Galerkin method. J Comput Appl Math 74:111–126 · Zbl 0862.73058 · doi:10.1016/0377-0427(96)00020-9
[10] Belytschko T, Tabbara M (1997) Dynamic Fracture Using Element-free Galerkin Methods. J Comput Appl Math 39:923–938 · Zbl 0953.74077
[11] Daux C, Moes N, Dolbow J, Sukumar N, Belytschko T (2000) Arbitrary branched and intersecting cracks with the extended finite element method. Int J Numer Meth 48:1741–1760 · Zbl 0989.74066 · doi:10.1002/1097-0207(20000830)48:12<1741::AID-NME956>3.0.CO;2-L
[12] Dolbow J, Moës N, Belytschko T (2000) Discontinuous enrichment in finite elements with a partition of unity method. Finite Elem Anal Design 36:235–260 · Zbl 0981.74057 · doi:10.1016/S0168-874X(00)00035-4
[13] Fleming M, Chu YA, Moran B, Belytschko T (1997) Enriched element-free Galerkin methods for crack tip fields. Int J Numer Meth Eng 40:1483–1504 · doi:10.1002/(SICI)1097-0207(19970430)40:8<1483::AID-NME123>3.0.CO;2-6
[14] Johnson GR, Cook WH (1983) A constitutive model and data for metals subjected to large strains, high strain rates and high temperature. In: Proceedings of the 7th international symposium on ballistics, The Hague, The Netherlands, pp 1–7
[15] Johnson GR, Cook WH (1985) Fracture Characteristics of Three Metals Subjected to Various Strains, Strain Rates, Temperatures and Pressures. Eng Fract 21:31–48 · doi:10.1016/0013-7944(85)90052-9
[16] Krysl P, Belytschko T (1996) Element-free Galerkin method: convergence of the continuous and discontinuous shape function. Comput Meth Appl Mech Eng 148:257–277 · Zbl 0918.73125 · doi:10.1016/S0045-7825(96)00007-2
[17] Krysl P, Belytschko T (1999) The element free Galerkin method for dynamic propagation of arbitrary 3-D cracks. Int J Solids Struct 44:767–800 · Zbl 0953.74078
[18] Li S, Liu WK (2000) Numerical Simulations of Strain Localization in Inelastic Solids Using Meshfree Methods. Int J Numer Meth Eng 48:1285–1309 · Zbl 1052.74618 · doi:10.1002/1097-0207(20000730)48:9<1285::AID-NME825>3.0.CO;2-H
[19] Lu YY, Belytschko T, Tabbara M (1995) Element-free Galerkin Method for wave Propagation and Dynamic Fracture. Comput Meth Appl Mech Eng 126:131–153 · Zbl 1067.74599 · doi:10.1016/0045-7825(95)00804-A
[20] Gurson AL (1977) Continuum theory of ductile rupture by void nucleation and growth: Part I yield criteria and flow rules for porous ductile materials. J Eng Materials Tech 99:2–15 · doi:10.1115/1.3443401
[21] Ortiz M, Pandolfi A (1999) Finite-deformation irreversible cohesive elements for three-dimensional crack-propagation analysis. Int J Numer Meth Eng 44:1267–1282 · Zbl 0932.74067 · doi:10.1002/(SICI)1097-0207(19990330)44:9<1267::AID-NME486>3.0.CO;2-7
[22] Peirce D, Shih CF, Needleman A (1984) A tangent modulus method for the rate dependent solids. Comput Struct 18:168–173 · Zbl 0531.73057 · doi:10.1016/0045-7949(84)90033-6
[23] Rashid YR (1968) Analysis of prestressed concrete vessels. Nuclear Eng Design 7:334–355 · doi:10.1016/0029-5493(68)90066-6
[24] Simonsen BC, Li S (2004) Meshfree modeling of ductile fracture. Int J Numer Meth Eng 60:1425–1450 · Zbl 1060.74673 · doi:10.1002/nme.1009
[25] Stolarska M, Chopp DL, Moes N, Belytschko T (2001) Modelling crack growth by level sets in the extended finite element method. Int J Numer Meth Eng 51:943–960 · Zbl 1022.74049 · doi:10.1002/nme.201
[26] Ventura G, Xu JX, Belytschko T (2002) A vector level set method and new discontinuity approximations for crack growth by EFG. Int J Numer Meth Eng 54:923–944 · Zbl 1034.74053 · doi:10.1002/nme.471
[27] Wawrzynek PA, Ingraffea AR (1987) Interactive finite element analysis of fracture processes: an integrated approach. Theor Appl Fract Mech 8:137–150 · doi:10.1016/0167-8442(87)90007-3
[28] Xia L, Shih CF, Hutchinson JW (1995a) Computational approach to ductile crack growth under large scale yielding conditions. J Mech Phys Solids 43:389–413 · Zbl 0875.73192 · doi:10.1016/0022-5096(94)00069-H
[29] Xia L, Shih CF (1995b) Ductile crack growth –II. Void nucleation and geometry effects on macroscopic fracture behavior. J Mech Phys Solids 43:1953–1981 · Zbl 0919.73257 · doi:10.1016/0022-5096(95)00063-O
[30] Xia L, Shih CF, Hutchinson (1995c) A computational approach to ductile crack growth under large scale yielding conditions. J Mech Phys Solids 43:389–413 · Zbl 0875.73192 · doi:10.1016/0022-5096(94)00069-H
[31] Xu P, Needleman A (1994) Numerical simulations of fast crack growth in brittle solids. J Mech Phys Solids 42:1397–1434 · Zbl 0825.73579 · doi:10.1016/0022-5096(94)90003-5
[32] Zhou M, Rosakis AJ, Ravichandran G (1996a) Dynamically Propagating Shear Bands in Impact-loaded Prenotched Plates—I Experimental Investigations of Temperature Signatures and Propagation Speed. J Mech Phys Solids 44:981–1006 · doi:10.1016/0022-5096(96)00003-8
[33] Zhou M, Ravichandran G, Rosakis AJ (1996b) Dynamically Propagating Shear Bands in Impact-loaded Prenotched Plates—II Numerical Simulations. J Mech Phys Solids 44:1007–1032 · doi:10.1016/0022-5096(96)00004-X
[34] Li S, Simonsen BC (2005) Meshfree simulation of ductile crack propagations. Int. J. for Comput. Methods in Eng. Sci. and Mechanics 6:1–19
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.