# zbMATH — the first resource for mathematics

A more effective linear kernelization for cluster editing. (English) Zbl 1162.68025
Summary: In the NP-hard Cluster Editing problem, we have as input an undirected graph $$G$$ and an integer $$k\geq 0$$. The question is whether we can transform $$G$$, by inserting and deleting at most $$k$$ edges, into a cluster graph, that is, a union of disjoint cliques. We first confirm a conjecture by M. Fellows [“The lost continent of polynomial time: Preprocessing and kernelization”, Lect. Notes Comput. Sci. 4169, 276–277 (2006; Zbl 1154.68560)] that there is a polynomial-time kernelization for Cluster Editing that leads to a problem kernel with at most $$6k$$ vertices. More precisely, we present a cubic-time algorithm that, given a graph $$G$$ and an integer $$k\geq 0$$, finds a graph $$G{^{\prime}}$$ and an integer $$k{^{\prime}}\leq k$$ such that $$G$$ can be transformed into a cluster graph by at most $$k$$ edge modifications iff $$G{^{\prime}}$$ can be transformed into a cluster graph by at most $$k{^{\prime}}$$ edge modifications, and the problem kernel $$G{^{\prime}}$$ has at most $$6k$$ vertices. So far, only a problem kernel of $$24k$$ vertices was known. Second, we show that this bound for the number of vertices of $$G{^{\prime}}$$ can be further improved to 4$$k$$ vertices. Finally, we consider the variant of Cluster Editing where the number of cliques that the cluster graph can contain is stipulated to be a constant $$d>0$$. We present a simple kernelization for this variant leaving a problem kernel of at most $$(d+2)k+d$$ vertices.

##### MSC:
 68R10 Graph theory (including graph drawing) in computer science 05C69 Vertex subsets with special properties (dominating sets, independent sets, cliques, etc.) 05C85 Graph algorithms (graph-theoretic aspects) 68Q25 Analysis of algorithms and problem complexity 92-08 Computational methods for problems pertaining to biology
Full Text:
##### References:
  Ailon, N.; Charikar, M.; Newman, A., Aggregating inconsistent information: ranking and clustering, (), 684-693 · Zbl 1192.90252  Alber, J.; Fellows, M.R.; Niedermeier, R., Polynomial time data reduction for dominating set, Journal of the ACM, 51, 3, 363-384, (2004) · Zbl 1192.68337  Bansal, Nikhil; Blum, Avrim; Chawla, Shuchi, Correlation clustering, Machine learning, 56, 1, 89-113, (2004) · Zbl 1089.68085  Ben-Dor, A.; Shamir, R.; Yakhini, Z., Clustering gene expression patterns, Journal of computational biology, 6, 3/4, 281-297, (1999)  Böcker, S.; Briesemeister, S.; Bui, Q.B.A.; Truß, A., A fixed-parameter approach for weighted cluster editing, (), 211-220 · Zbl 1178.68373  Böcker, S.; Briesemeister, S.; Bui, Q.B.A.; Truß, A., Going weighted: parameterized algorithms for cluster editing, (), 1-12 · Zbl 1168.68441  Böcker, S.; Briesemeister, S.; Klau, G.W., Exact algorithms for cluster editing: evaluation and experiments, (), 289-302 · Zbl 1215.68168  Charikar, Moses; Guruswami, Venkatesan; Wirth, Anthony, Clustering with qualitative information, Journal of computer and system sciences, 71, 3, 360-383, (2005) · Zbl 1094.68075  Chen, J.; Fernau, Henning; Kanj, Iyad A.; Xia, Ge, Parametric duality and kernelization: lower bounds and upper bounds on kernel size, SIAM journal on computing, 37, 4, 1077-1106, (2007) · Zbl 1141.05075  Chen, Zhi-Zhong; Jiang, Tao; Lin, Guohui, Computing phylogenetic roots with bounded degrees and errors, SIAM journal on computing, 32, 4, 864-879, (2003) · Zbl 1053.68069  Dehne, F.; Langston, M.A.; Luo, X.; Pitre, S.; Shaw, P.; Zhang, Y., The cluster editing problem: implementations and experiments, (), 13-24 · Zbl 1154.68451  Dom, M.; Guo, J.; Hüffner, F.; Niedermeier, R., Extending the tractability border for closest leaf powers, (), 397-408, Long version unter the title “Closest 4-leaf power is fixed-parameter tractable” to appear in Discrete Applied Mathematics · Zbl 1171.68496  Dom, M.; Guo, J.; Hüffner, F.; Niedermeier, R., Error compensation in leaf power problems, Algorithmica, 44, 4, 363-381, (2006) · Zbl 1095.68080  Downey, Rodney G.; Fellows, Michael R., Parameterized complexity, (1999), Springer · Zbl 0961.68533  Fellows, Michael R., The lost continent of polynomial time: preprocessing and kernelization, (), 312-321 · Zbl 1154.68560  Fellows, M.R.; Langston, Michael A.; Rosamond, Frances; Shaw, Peter, Polynomial-time linear kernelization for cluster editing, (), 276-277  Flum, Jörg; Grohe, Martin, Parameterized complexity theory, (2006), Springer · Zbl 1143.68016  Giotis, I.; Guruswami, V., Correlation clustering with a fixed number of clusters, (), 1167-1176 · Zbl 1194.62087  Gramm, J.; Guo, J.; Hüffner, F.; Niedermeier, R., Graph-modeled data clustering: exact algorithms for clique generation, Theory of computing systems, 38, 4, 373-392, (2005) · Zbl 1084.68117  Guo, J., A more effective linear kernelization for cluster editing, (), 36-47 · Zbl 1176.05078  Guo, J.; Niedermeier, R., Invitation to data reduction and problem kernelization, ACM SIGACT news, 38, 1, 31-45, (2007)  Hsu, W.; Ma, T., Substitution decomposition on chordal graphs and applications, (), 52-60  Křivánek, Mirko; Morávek, Jaroslav, NP-hard problems in hierarchical-tree clustering, Acta informatica, 23, 3, 311-323, (1986) · Zbl 0644.68055  Lin, Guohui; Kearney, Paul E.; Jiang, Tao, Phylogenetic $$k$$-root and Steiner $$k$$-root, (), 539-551 · Zbl 1044.68704  Niedermeier, Rolf, Invitation to fixed-parameter algorithms, (2006), Oxford University Press · Zbl 1095.68038  Protti, F.; da Silva, M.D.; Szwarcfiter, J.L., Applying modular decomposition to parameterized bicluster editing, (), 1-12, Long version to appear in Theory of Computing Systems · Zbl 1154.68455  Shamir, R.; Sharan, R.; Tsur, D., Cluster graph modification problems, Discrete applied mathematics, 144, 173-182, (2004) · Zbl 1068.68107
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.