zbMATH — the first resource for mathematics

A parallel adaptive barotropic model of the atmosphere. (English) Zbl 1162.35437
A parallel adaptive model (PLASMA) is presented which describes a barotropic atmosphere through the spherical shallow-water equations. The computational grid is adapted at each time-step, reducing the number of grid points with a moderate increase of error with respect to the uniform grid case. A Lagrange-Galerkin method is used to discretize the fluid equations. The simulations show satisfactory agreement when compared with known analytic solutions.

35Q30 Navier-Stokes equations
65Z05 Applications to the sciences
76N15 Gas dynamics (general theory)
Full Text: DOI
[1] Amestoy, P.R.; Duff, I.S.; L’Excellent, J.-Y., Multifrontal parallel distributed symmetric and unsymmetric solvers, Comput. methods appl. mech. eng., 184, 501-520, (2000) · Zbl 0956.65017
[2] Bacon, D.P.; Ahmad, N.N.; Boybeyi, Z.; Dunn, T.J.; Hall, M.S.; Lee, P.C.S.; Sarma, R.A.; Turner, M.D., A dynamically adapting weather and dispersion model: the operational multiscale environment model with grid adaptivity (OMEGA), Mon. wea. rev., 128, 2044-2076, (2000)
[3] S. Balay, K. Buschelmann, V. Eijkhout, W. Gropp, D. Kaushik, M. Knepley, L.C. McInnes, B. Smith, H. Zhang, PETSc Users Manual. Argonne National Laboratory, August 2004. Version 2.2.1.
[4] Bänsch, E., Local mesh refinement in 2 and 3 dimensions, Impact comput. sci. eng., 3, 181-191, (1991) · Zbl 0744.65074
[5] Barros, S.R.M.; Garcia, C.I., A global semi-implicit semi-Lagrangian shallow-water model on locally refined grids, Mon. wea. rev., 132, 53-65, (2004)
[6] J. Behrens, Adaptive mesh generator for atmospheric and oceanic simulations – amatos. Technical Report TUM-M0409, Technische Universität München, Zentrum Mathematik, Boltzmannstr. 3, 85747 Garching, 2004. Available from: <http://www-lit.ma.tum.de/veroeff/html/040.65008.html>.
[7] Behrens, J.; Rakowsky, N.; Hiller, W.; Handorf, D.; Läuter, M.; Päpke, J.; Dethloff, K., Amatos: parallel adaptive mesh generator for atmospheric and oceanic simulation, Ocean modelling, 10, 171-183, (2005)
[8] Behrens, J.; Zimmermann, J., Parallelizing an unstructured grid generator with a space-filling curve approach, (), 815-823
[9] Bonaventura, L.; Ringler, T.R., Analysis of discrete shallow-water models on geodesic delauny grids with C-type staggering, Mon. wea. rev., 133, 2351-2373, (2004)
[10] Côté, J., A Lagrange multiplier approach for the metric terms of semi-Lagrangian models on the sphere, Q.J.R. meteorol. soc., 114, 1347-1352, (1988)
[11] Courtier, P.; Geleyn, J.F., A global numerical weather prediction model with variable resolution: application to the shallow water equations, Q.J.R. meteorol. soc., 114, 1321-1346, (1988)
[12] Davies, H.C., A lateral boundary formulation for multi-level prediction models, Q.J.R. meteorol. soc., 102, 405-418, (1976)
[13] Deque, M.; Piodelievre, J.P., High resolution climate stimulation over Europe, Clim. dyn., 11, 321-339, (1995)
[14] Dietachmayer, G.S.; Droegemeier, K.K., Applications of continuous dynamic grid adaptation techniques to meteorological modeling. part I: basic formulation and accuracy, Mon. wea. rev., 120, 1675-1706, (1992)
[15] R.D. Falgout, U.M. Yang, hypre: a Library of High Performance Preconditioners, in: P. Sloot, C. Tan., J. Dongarra, A. Hoekstra (Eds.), Computationla Science -ICCS 2002 Part III, Notes in Computer Science, vol. 2331, pp. 632-641, 2002. Also available as Lawrence Livermore National Laboratory technical report UCRL-JC-146175. Available from: <http://www.llnl.gov/CASC/linear_solvers/pubs/hypre.ps>. · Zbl 1056.65046
[16] Fournier, A.; Taylor, M.A.; Tribbia, J.J., The spectral element atmospheric model: high-resolution parallel computation and response to regional forcing, Mon. wea. rev., 132, 726-748, (2004)
[17] M.S. Fox-Rabinovitz, Stretched-Grid Model Intercomparison Project, 2006. Available from: <http://essic.umd.edu/ foxrab/sgmip.html>.
[18] Fox-Rabinovitz, M.S.; Stenchikov, G.L.; Suarez, M.J.; Takacs, L.L., A finite-difference GCM dynamical core with a variable-resolution stretched grid, Mon. wea. rev., 125, 2943-2968, (1997)
[19] Fox-Rabinovitz, M.S.; Takacs, L.; Govindaraju, R., A variable resolution stretched grid general circulation model and data assimilation system with multiple areas of interest: studying anomalous regional climate events of 1998, J. geophys. res., 107, 4768, (2002)
[20] Frickenhaus, S.; Hiller, W.; Best, M., Fossi: the family of simplified solver interfaces for the rapid development of parallel numerical atmosphere and Ocean models, Ocean modelling, 10, 1-2, 185-191, (2005)
[21] Galewsky, J.; Scott, R.; Polvani, L.M., An initial-value problem for testing numerical models of the global shallow water equations, 56, 429-440, (2004)
[22] Giorgi, F., Simulation of regional climate using a limited area model nested in a general circulation model, J. climate, 3, 941-963, (1990)
[23] Giraldo, F.X.; Warburton, T., A nodal triangle-based spectral element method for the spherical shallow water equations on unstructured grids, J. comput. phys., 207, 129-150, (2005) · Zbl 1177.86002
[24] Haltiner, G.J.; Williams, R., Numerical prediction and dynamic meteorology, (1980), Wiley New York
[25] Hardiker, V., A global numerical weather prediction model with variable resolution, Mon. wea. rev., 125, 59-73, (1997)
[26] Heinze, T.; Hense, A., The shallow water equations on the sphere and their lagrange – galerkin-solution, Meteorol. atmos. phys., 81, 129-137, (2002)
[27] Iselin, J.P.; Prusa, J.M.; Gutowski, W.J., Dynamic grid adaptation using the MPDATA scheme, Mon. wea. rev., 130, 1026-1039, (2002)
[28] C. Jablonowski, Adaptive Grids in Weather and Climate Modeling. PhD Thesis, University of Michigan, Ann Arbor, MI, USA, 2004.
[29] Jablonowski, C.; Herzog, M.; Penner, J.E.; Oehmke, R.C.; Stout, Q.F.; van Leer, B., Adaptive grids for weather and climate models, (), 233-250
[30] G. Karypis, V. Kumar. Parallel Threshold-based ILU Factorization, in: Proceedings of 9th Supercomputing Conference, 1997. Available from: <http://www-users.cs.umn.edu/ karypis/publications/Papers/PDF/pilut.pdf>.
[31] Lange, H.-J., Die physik des wetters und des klimas, (2002), Dietrich Reimer Verlag Berlin
[32] M. Läuter, Großräumige Zirkulationsstrukturen in einem nichtlinearen adaptiven Atmosphärenmodell, PhD thesis, Universität Potsdam, Am Neuen Palais 10, 14469 Potsdam, Germany, 2004.
[33] Läuter, M.; Handorf, D.; Dethloff, K., Unsteady analytical solutions of the spherical shallow water equations, J. comput. phys., 210, 535-553, (2005) · Zbl 1078.86001
[34] Lorenz, P.; Jacob, D., Influence of regional scale information on the global circulation: A two-way nesting climate simulation, Geophys. res. lett., 32, L18706, (2005)
[35] McGregor, J.L., Semi-Lagrangian advection on conformal-cubic grids, Mon. wea. rev., 124, 1311-1322, (1996)
[36] Morton, K.W.; Priestley, A.; Süli, E., Stability of the lagrange – galerkin method with non-exact integration, Math. mod. num. anal., 22, 625-653, (1988) · Zbl 0661.65114
[37] Pedlosky, J., Geophysical fluid dynamics, (1987), Springer New York · Zbl 0713.76005
[38] Phillips, N.A., Numerical integration of the primitive equations on the hemisphere, Mon. wea. rev., 87, 333-345, (1959)
[39] Prusa, J.M.; Smolarkiewicz, P.K., An all-scale anelastic model for geophysical flows: dynamic grid deformation, J. comput. phys., 190, 601-622, (2003) · Zbl 1076.86001
[40] Rivara, M.C., Algorithms for refining triangular grids suitable for adaptive and multigrid techniques, Int. J. numer. methods eng., 20, 745-756, (1984) · Zbl 0536.65085
[41] Ruge, J.W.; McCormick, S.F.; Yee, S.Y.K., Multilevel adaptive methods for semi-implicit solution of shallow-water equations on the sphere, Mon. wea. rev., 123, 2197-2205, (1995)
[42] Schmidt, F., Variable fine mesh in a spectral global model, Beitr. phys. atmos., 50, 211-217, (1977)
[43] Skamarock, W.C.; Klemp, J.B., Adaptive grid refinements for two-dimensional and three-dimensional nonhydrostatic atmospheric flow, Mon. wea. rev., 121, 788-804, (1993)
[44] Skamarock, W.C.; Oliger, J.; Street, R.L., Adaptive grid refinements for numerical weather prediction, J. comput. phys., 80, 27-60, (1989) · Zbl 0661.76021
[45] Staniforth, A.; Côté, J., Semi-Lagrangian integration schemes for atmospheric models – a review, Mon. wea. rev., 119, 2206-2223, (1991)
[46] Staniforth, A.N.; Mitchell, H.L., A variable-resolution finite-element technique for regional forecasting with the primitive equations, Mon. wea. rev., 106, 439-447, (1978)
[47] Süli, E., Convergence and nonlinear stability of the lagrange – galerkin method for the navier – stokes equations, Numer. math., 53, 459-483, (1988) · Zbl 0637.76024
[48] R.S. Tuminaro, M. Heroux, S.A. Hutchinson, J.N. Shadid, Official Aztec User’s Guide: Version 2.1, 1999. Available from: <http://www.cs.sandia.gov/CRF/aztec1.html>.
[49] Williamson, D.L.; Drake, J.B.; Hack, J.J.; Jakob, R.; Swarztrauber, P.N., A standard test set for numerical approximations to the shallow water equations in spherical geometry, J. comput. phys., 102, 211-224, (1992) · Zbl 0756.76060
[50] Zhang, D.-L.; Chang, H.-R.; Seaman, N.L.; Warner, T.T.; Fritsch, J.M., A two-way interactive nesting procedure with variable terrain resolution, Mon. wea. rev., 114, 1330-1339, (1986)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.