×

zbMATH — the first resource for mathematics

Minimal Hodgkin-Huxley type models for different classes of cortical and thalamic neurons. (English) Zbl 1161.92013
Summary: We review the development of Hodgkin-Huxley (HH) type models of the cerebral cortex and thalamic neurons for network simulations. The intrinsic electrophysiological properties of cortical neurons were analyzed from several preparations, and we selected the four most prominent electrophysiological classes of neurons. These four classes are “fast spiking”, “regular spiking”, “intrinsically bursting” and “low-threshold spike” cells. For each class, we fit “minimal” HH type models to experimental data.
The models contain the minimal set of voltage-dependent currents to account for the data. To obtain models as generic as possible, we used data from different preparations in vivo and in vitro, such as the rat somatosensory cortex and thalamus, guinea-pig visual and frontal cortex, ferret visual cortex, cat visual cortex and cat association cortex. For two cell classes we used automatic fitting procedures applied to several cells, which revealed substantial cell-to-cell variability within each class. The selection of such cellular models constitutes a necessary step towards building network simulations of the thalamocortical system with realistic cellular dynamical properties.

MSC:
92C20 Neural biology
92-08 Computational methods for problems pertaining to biology
92C05 Biophysics
37N25 Dynamical systems in biology
Software:
NEURON
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Achard P, De Schutter E (2006) Complex parameter landscape for a complex neuron model. PLoS Comput Biol 2: e94 · doi:10.1371/journal.pcbi.0020094
[2] Baldi P, Vanier MC, Bower JM (1998) On the use of Bayesian methods for evaluating compartmental neural models. J Comput Neurosci 5: 285–314 · Zbl 0931.92002 · doi:10.1023/A:1008887028637
[3] Bhalla US, Bower JM (1993) Exploring parameter space in detailed single neuron models: simulations of the mitral and granule cells of the olfactory bulb. J Neurophysiol 69: 1948–1965
[4] Brette R, Gerstner W (2005) Adaptive exponential integrate-and-fire model as an effective description of neuronal activity. J Neurophysiol 94: 3637–3642 · doi:10.1152/jn.00686.2005
[5] Cauller LJ, Connors BW (1992) Functions of very distal dendrites: experimental and computational studies of Layer I synapses on neocortical pyramidal cells. In: McKenna T, Davis J, Zornetzer SF (eds) Single neuron computation. Academic Press, Boston
[6] Connors BW, Gutnick MJ (1990) Intrinsic firing patterns of diverse neocortical neurons. Trends Neurosci 13: 99–104 · doi:10.1016/0166-2236(90)90185-D
[7] Contreras D, Steriade M (1995) Cellular basis of EEG slow rhythms: a study of dynamic corticothalamic relationships. J Neurosci 15: 604–622
[8] de la Peña E, Geijo-Barrientos E (1996) Laminar organization, morphology and physiological properties of pyramidal neurons that have the low-threshold calcium current in the guinea-pig frontal cortex. J Neurosci 16: 5301–5311
[9] Destexhe A (2001) Simplified models of neocortical pyramidal cells preserving somatodendritic voltage attenuation. Neurocomputing 38: 167–173 · doi:10.1016/S0925-2312(01)00428-3
[10] Destexhe A, Bal T, McCormick DA, Sejnowski TJ (1996) Ionic mechanisms underlying synchronized oscillations and propagating waves in a model of ferret thalamic slices. J Neurophysiol 76: 2049–2070
[11] Destexhe A, Contreras D, Steriade M, Sejnowski TJ, Huguenard JR (1996) In vivo, in vitro and computational analysis of dendritic calcium currents in thalamic reticular neurons. J Neurosci 16: 169–185
[12] Destexhe A, Neubig M, Ulrich D, Huguenard JR (1998) Dendritic low-threshold calcium currents in thalamic relay cells. J Neurosci 18: 3574–3588
[13] Destexhe A, Contreras D, Steriade M (2001) LTS cells in cerebral cortex and their role in generating spike-and-wave oscillations. Neurocomputing 38: 555–563 · doi:10.1016/S0925-2312(01)00348-4
[14] Druckmann S, Banitt Y, Gidon A, Schurmann F, Markram H, Segev I (2007) A novel multiple objective optimization framework for constraining conductance-based neuron models by experimental data. Front Neurosci 1: 7–18 · doi:10.3389/neuro.01.1.1.001.2007
[15] Eichler-West R, Wilcox G (1997) Robust parameter selection for compartmental models of neurons using evolutionary algorithms. In: Bower JM (eds) Computational neuroscience: trends in research 1997. Plenum Press, New York, pp 75–80
[16] Foster WR, Ungar LH, Schwaber JS (1993) Significance of conductances in Hodgkin–Huxley models. J Neurophysiol 70: 2502–2518
[17] Golowasch J, Goldman MS, Abbott LF, Marder E (2002) Failure of averaging in the construction of a conductance-based neuron model. J Neurophysiol 87: 1129–1131
[18] Gray CM, McCormick DA (1996) Chattering cells: superficial pyramidal neurons contributing to the generation of synchronous oscillations in the visual cortex. Science 274: 109–113 · doi:10.1126/science.274.5284.109
[19] Gupta A, Wang Y, Markram H (2000) Organizing principles for a diversity of GABAergic interneurons and synapses in the neocortex. Science 287: 273–278 · doi:10.1126/science.287.5451.273
[20] Haufler D, Morinc F, Lacaille JC, Skinner FK (2007) Parameter estimation in single-compartment neuron models using a synchronization-based method. Neurocomputing 70: 1605–1610 · doi:10.1016/j.neucom.2006.10.041
[21] Hines ML, Carnevale NT (1997) The neuron simulation environment. Neural Comput 9: 1179–1209 · doi:10.1162/neco.1997.9.6.1179
[22] Hodgkin AL, Huxley AF (1952) A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol 117: 500–544
[23] Holmes W, Ambros-Ingerson J, Grover L (2006) Fitting experimental data to models that use morphological data from public databases. J Computat Neurosci 20: 349–365 · Zbl 1120.92011 · doi:10.1007/s10827-006-7189-8
[24] Huguenard JR, McCormick DA (1992) Simulation of the currents involved in rhythmic oscillations in thalamic relay neurons. J Neurophysiol 68: 1373–1383
[25] Huguenard JR, Prince DA (1992) A novel T-type current underlies prolonged Ca2+-dependent bursts firing in GABAergic neurons of rat thalamic reticular nucleus. J Neurosci 12: 3804–3817
[26] Izhikevich EM (2004) Which model to use for cortical spiking neurons?. IEEE Trans Neural Netw 15: 1063–1070 · doi:10.1109/TNN.2004.832719
[27] Jolivet R, Lewis TJ, Gerstner W (2004) Generalized integrate-and-fire models of neuronal activity approximate spike trains of a detailed model to a high degree of accuracy. J Neurophysiol 92: 959–976 · doi:10.1152/jn.00190.2004
[28] LeMasson G, Maex R (2001) Introduction to equation solving and parameter fitting. In: De Schutter E (eds) Computational neuroscience: realistic modeling for experimentalists. CRC Press, Boca Raton, pp 1–22
[29] Llinás RR (1988) The intrinsic electrophysiological properties of mammalian neurons: a new insight into CNS function. Science 242: 1654–1664 · doi:10.1126/science.3059497
[30] Major G, Larkmann AU, Jonas P, Sakmann B, Jack JJB (1994) Detailed passive cable models of whole-cell recorded CA3 pyramidal neurons in rat hippocampal slices. J Neurosci 14: 4613–4638
[31] Marder E, Tobin AE, Grashow R (2007) How tightly tuned are network parameters? Insight from computational and experimental studies in small rhythmic motor networks. Prog Brain Res 165: 193–200 · doi:10.1016/S0079-6123(06)65012-7
[32] McCormick DA, Connors BW, Lighthall JW, Prince DA (1985) Comparative electrophysiology of pyramidal and sparsely spiny stellate neurons of the neocortex. J Neurophysiol 54: 782–806
[33] Monier C, Chavane F, Baudot P, Graham LJ, Frégnac Y (2003) Orientation and direction selectivity of synaptic inputs in visual cortical neurons: a diversity of combinations produces spike tuning. Neuron 37: 663–680 · doi:10.1016/S0896-6273(03)00064-3
[34] Press WH, Flannery BP, Teukolsky SA (1992) Numerical recipes in C: The Art of Scientific Computing, 2nd edn. Cambridge University Press, Cambridge · Zbl 0845.65001
[35] Rall W, Burke RE, Holmes WR, Jack JJ, Redman SJ, Segev I (1992) Matching dendritic neuron models to experimental data. Physiol Rev 72: S159–S186
[36] Rapp M, Segev I, Yarom Y (1994) Physiology, morphology and detailed passive models of guinea-pig cerebellar Purkinje cells. J Physiol 474: 101–118
[37] Rauch A, La Camera G, Lüscher H-R, Senn W, Fusi S (2003) Neocortical pyramidal cells respond as integrate-and-fire neurons to in vivo like input currents. J Neurophysiol 90: 1598–1612 · doi:10.1152/jn.00293.2003
[38] Renaud S, Tomas J, Bornat Y, Daouzli A, Saïghi S (2007) Neuromimetic ICs with analog cores: an alternative for simulating spiking neural networks. In: International symposium on circuits and systems (ISCAS07), New-Orleans, USA, 27–30 May (ISBN 1-4244-0921-1), pp 3355–358
[39] Reuveni I, Friedman A, Amitai Y, Gutnick MJ (1993) Stepwise repolarization from Ca2+ plateaus in neocortical pyramidal cells: evidence for nonhomogeneous distribution of HVA Ca2+ channels in dendrites. J Neurosci 13: 4609–4621
[40] Rinzel J (1987) A formal classification of bursting mechanisms in excitable systems. In: Teramoto E, Yamaguti M (eds) Mathematical topics in population biology, morphogenesis and neurosciences. Springer, Berlin, pp 267–281
[41] Rinzel J, Ermentrout GB (1989) Analysis of neural excitability and oscillations. In: Koch C, Segev I (eds) Methods in neuronal modeling. MIT press, Cambridge, pp 135–169
[42] Rose RM, Hindmarsh JL (1989) The assembly of ionic currents in a thalamic neuron. I. The three-dimensional model. Proc R Soc Lond B Biol Sci 237: 267–288 · doi:10.1098/rspb.1989.0049
[43] Sayer RJ, Schwindt PC, Crill WE (1990) High- and low-threshold calcium currents in neurons acutely isolated from rat sensorimotor cortex. Neurosci Lett 120: 175–178 · doi:10.1016/0304-3940(90)90031-4
[44] Shu Y, Hasenstaub A, Badoual M, Bal T, McCormick DA (2003) Barrages of synaptic activity control the gain and sensitivity of cortical neurons. J Neurosci 23: 10388–10401
[45] Smith GD, Cox CL, Sherman M, Rinzel J (2000) Fourier analysis of sinusoidally driven thalamocortical relay neurons and a minimal integrate-and-fire-or-burst model. J Neurophysiol 83: 588–610
[46] Steriade M, Timofeev I, Durmüller N, Grenier F (1998) Dynamic properties of corticothalamic neurons and local cortical interneurons generating fast rhythmic (30–40 Hz) spike bursts. J Neurophysiol 79: 483–490
[47] Stratford K, Mason A, Larkman A, Major G, Jack J (1989) The modeling of pyramidal neurones in the visual cortex. In: Durbin A, Miall C, Mitchison G (eds) The computing neuron. Addison-Wesley, Workingham, pp 296–321
[48] Stuart G, Spruston N (1998) Determinants of voltage attenuation in neocortical pyramidal neuron dendrites. J Neurosci 18: 3501–3510
[49] Tawfik B, Durand DM (1994) Nonlinear parameter-estimation by linear associationapplication to a 5-parameter passive neuron model. IEEE Trans Biomed Eng 41: 461–469 · doi:10.1109/10.293221
[50] Taylor AL, Hickey TJ, Prinz AA, Marder E (2006) Structure and visualization of high-dimensional conductance spaces. J Neurophysiol 96: 891–905 · doi:10.1152/jn.00367.2006
[51] Tien JH, Guckenheimer J (2008) Parameter estimation for bursting neural models. J Computat Neurosci 24: 358–373 · Zbl 05537049 · doi:10.1007/s10827-007-0060-8
[52] Toledo-Rodriguez M, Blumenfeld B, Wu C, Luo J, Attali B, Goodman P, Markram H (2004) Correlation maps allow neuronal electrical properties to be predicted from single-cell gene expression profiles in rat neocortex. Cereb Cortex 14: 1310–1327 · doi:10.1093/cercor/bhh092
[53] Traub RD, Miles R (1991) Neuronal networks of the Hippocampus. Cambridge University Press, Cambridge
[54] Vanier MC, Bower JM (1999) A comparative survey of automated parameter-search methods for compartmental neural models. J Comput Neurosci 7: 149–171 · doi:10.1023/A:1008972005316
[55] Yamada WM, Koch C, Adams PR (1989) Multiple channels and calcium dynamics. In: Koch C, Segev I (eds) Methods in neuronal modeling. MIT press, Cambridge, pp 97–134
[56] Zou Q, Bornat Y, Saïghi S, Tomas J, Renaud S, Destexhe A (2006) Analog-digital simulations of full conductance-based networks of spiking neurons with spike timing dependent plasticity. Network 17: 211–233 · doi:10.1080/09548980600711124
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.