zbMATH — the first resource for mathematics

Existence results for energetic models for rate-independent systems. (English) Zbl 1161.74387
From the introduction: We consider mechanical models which are driven by an external loading on a time scale much slower than any internal time scale (like viscous relaxation times) but still much faster than the time needed to find the thermo-dynamical equilibrium. Typical phenomena involve dry friction, elasto-plasticity, certain hysteresis models for shape-memory alloys and quasistatic delamination or fracture. The main feature is the rate-independency of the system response, which means that a loading with twice (or half) the speed will lead to a response with exactly twice (or half) the speed. We refer to several articles for approaches to these phenomena involving either differential inclusions or abstract hysteresis operators. Our method is different, as we avoid time derivatives and use energy principles instead.

74H20 Existence of solutions of dynamical problems in solid mechanics
49J10 Existence theories for free problems in two or more independent variables
74A45 Theories of fracture and damage
74C15 Large-strain, rate-independent theories of plasticity (including nonlinear plasticity)
74G65 Energy minimization in equilibrium problems in solid mechanics
74R10 Brittle fracture
Full Text: DOI
[1] Abeyaratne, R., Chu, C.-H., James, R.: Kinetics of materials with wiggly energies: theory and application to the evolution of twinning microstructures in a Cu-Al-Ni shape memory alloy. Phil. Mag. A 73, 457-497 (1996) · doi:10.1080/01418619608244394
[2] Barbu, V., Precupanu, T.: Convexity and optimization in Banach spaces, 3rd edn. D. Reidel Publishing Co., Dordrecht 1986 · Zbl 0594.49001
[3] Brokate, M., Sprekels, J.: Hysteresis and phase transitions. Springer, New York 1996 · Zbl 0951.74002
[4] Chambolle, A.: A density result in two-dimensional linearized elasticity and applications. Arch. Rat. Mech. Analysis 167, 211-233 (2003) · Zbl 1030.74007 · doi:10.1007/s00205-002-0240-7
[5] Carstensen, C., Hackl, K., Mielke, A.: Non-convex potentials and microstructures in finite-strain plasticity. Proc. Royal Soc. London, Ser. A 458, 299-317 (2002) · Zbl 1008.74016 · doi:10.1098/rspa.2001.0864
[6] Colli, P., Visintin, A.: On a class of doubly nonlinear evolution equations. Comm. Partial Differential Equations 15 (5), 737-756 (1990) · Zbl 0707.34053 · doi:10.1080/03605309908820706
[7] Dacorogna, B.: Direct methods in the Calculus of Variations. Springer, Berlin 1989 · Zbl 0703.49001
[8] Dal Maso, G., Toader, R.: A model for quasi-static growth of brittle fractures: existence and approximation results. Arch. Rat. Mech. Anal. 162, 101-135 (2002) · Zbl 1042.74002 · doi:10.1007/s002050100187
[9] Efendiev, M.: On the compactness of the stable set for rate-independent processes. Comm. Pure Applied Analysis 2, 495-509 (2003) · Zbl 1060.47061 · doi:10.3934/cpaa.2003.2.495
[10] Francfort, G.A., Larsen, C.: Existence and convergence for quasi-static evolution of brittle fracture. Comm. Pure Applied Math. LVI, 1465-1500 (2003) · Zbl 1068.74056
[11] Francfort, G.A., Marigo, J.-J.: Stable damage evolution in a brittle continuous medium. European J. Mech. A Solids 12, 149-189 (1993) · Zbl 0772.73059
[12] Francfort, G., Marigo, J.-J.: Revisiting brittle fracture as an energy minimization problem. J. Mech. Phys. Solids 46, 1319-1342 (1998) · Zbl 0966.74060 · doi:10.1016/S0022-5096(98)00034-9
[13] Govindjee, S., Mielke, A., Hall, G.: The free-energy of mixing for n-variant martensitic phase transformations using quasi-convex analysis. J. Mech. Physics Solids 50, 1897-1922 (2002). Erratum and Correct Reprinting: 51 (4), 763 and I-XXVI (2003) · Zbl 1116.74399 · doi:10.1016/S0022-5096(02)00009-1
[14] James, R.D.: Hysteresis in phase transformations. In: ICIAM 95 (Hamburg, 1995), vol. 87 of ath. Res., pp. 135-154. Akademie Verlag, Berlin 1996 · Zbl 0848.73002
[15] Ko?vara, M., Mielke, A., Roub??ek, T.: A rate-independent approach to the delamination problem. Math. Mech. Solids (2003) (submitted)
[16] Krasnosel?ski?, M.A., Pokrovski?, A.V.: Systems with hysteresis. Springer, Berlin 1989
[17] Lambrecht, M., Miehe, C., Dettmar, J.: Energy relaxation of non-convex incremental stress potentials in a strain-softening elastic-plastic bar. Int. J. Solids Structures 40, 1369-1391 (2003) · Zbl 1065.74543 · doi:10.1016/S0020-7683(02)00658-3
[18] Mainik, A.: Ratenunabh?ngige Modelle f?r Phasentransformationen in Formged?chtnislegierungen. PhD Thesis, Universit?t Stuttgart. In preparation (2004)
[19] Menon, G.: Gradient systems with wiggly energies and related averaging problems. Arch. Rat. Mech. Analysis 162, 193-246 (2002) · Zbl 1008.74065 · doi:10.1007/s002050200189
[20] Mielke, A.: Finite elastoplasticity, Lie groups and geodesics on SL(d). In: Newton, P., Weinstein, A., Holmes, P. (eds.) Geometry, dynamics, and mechanics, pp. 61-90. Springer, Berlin Heidelberg New York 2002 · Zbl 1146.74309
[21] Mielke, A.: Energetic formulation of multiplicative elasto-plasticity using dissipation distances. Cont. Mech. Thermodynamics 15, 351-382 (2003) · Zbl 1068.74522 · doi:10.1007/s00161-003-0120-x
[22] Mielke, A.: Existence of minimizers in incremental elasto-plasticity with finite strains. SIAM J. Math. Analysis (2004) (to appear) · Zbl 1076.74012
[23] Monteiro Marques, M.D.P.: Differential inclusions in nonsmooth mechanical problems. Shocks and dry friction. Birkh?user, Basel 1993 · Zbl 0802.73003
[24] Mielke, A., Roub??ek, T.: A rate-independent model for inelastic behavior of shape-memory alloys. Multiscale Model. Simul. 1, 571-597 (2003) · Zbl 1183.74207 · doi:10.1137/S1540345903422860
[25] Mielke, A., Theil, F.: A mathematical model for rate-independent phase transformations with hysteresis. In: Alber, H.-D., Balean, R., Farwig, R. (eds.) Proceedings of the Workshop on ?Models of Continuum Mechanics in Analysis and Engineering?, pp. 117-129. Shaker, Aachen 1999
[26] Mielke, A., Theil, F.: On rate-independent hysteresis models. Nonl. Diff. Eqns. Appl. (NoDEA) (2003) (in print) · Zbl 1061.35182
[27] Mielke, A., Theil, F., Levitas, V.: A variational formulation of rate-independent phase transformations using an extremum principle. Arch. Rational Mech. Anal. 162, 137-177 (2002) · Zbl 1012.74054 · doi:10.1007/s002050200194
[28] Ortiz, M., Repetto, E.: Nonconvex energy minimization and dislocation structures in ductile single crystals. J. Mech. Phys. Solids 47 (2), 397-462 (1999) · Zbl 0964.74012 · doi:10.1016/S0022-5096(97)00096-3
[29] Visintin, A.: Differential models of hysteresis. Springer, Berlin 1994 · Zbl 0820.35004
[30] Visintin, A.: A new approach to evolution. C.R.A.S. Paris 332, 233-238 (2001) · Zbl 0977.35142
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.