×

Gaussian fields and Gaussian sheets with generalized Cauchy covariance structure. (English) Zbl 1161.60314

Summary: Two types of Gaussian processes, namely the Gaussian field with generalized Cauchy covariance (GFGCC) and the Gaussian sheet with generalized Cauchy covariance (GSGCC) are considered. Some of the basic properties and the asymptotic properties of the spectral densities of these random fields are studied. The associated self-similar random fields obtained by applying the Lamperti transformation to GFGCC and GSGCC are studied.

MSC:

60G10 Stationary stochastic processes
60G17 Sample path properties
60G60 Random fields
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Adler, A. J., The Geometry of Random Fields (1981), Wiley: Wiley New York · Zbl 0478.60059
[2] Anderson, D. N., A multivariate Linnik distribution, Stat. Probab. Lett., 14, 333-336 (1992) · Zbl 0754.60022
[3] Andrews, George E.; Askey, Richard; Roy, Ranjan, Special functions, (Encyclopedia of Mathematics and its Applications, vol. 71 (1999), Cambridge University Press: Cambridge University Press Cambridge) · Zbl 1075.33500
[4] Ayache, A., Hausdorff dimension of the graph of the fractional Brownian sheet, Rev. Mat. Iberoamericana, 20, 395-412 (2004) · Zbl 1057.60033
[5] A. Ayache, S. Leger, Fractional and multifractional Brownian sheet, unpublished manuscript; A. Ayache, S. Leger, Fractional and multifractional Brownian sheet, unpublished manuscript
[6] Ayache, A.; Xiao, Y., Asymptotic properties and Hausdorff dimensions of fractional Brownian sheets, J. Fourier Anal. Appl., 11, 407-439 (2005) · Zbl 1088.60033
[7] Benassi, A.; Jaffard, S.; Roux, D., Elliptic Gaussian random processes, Rev. Mat. Iberoamericana, 13, 19-90 (1997) · Zbl 0880.60053
[8] Berizzi, F.; Dalle Mese, E.; Martorella, M., A sea surface fractal model for ocean remote sensing, Int. J. Remote Sensing, 25, 1265-1270 (2004)
[9] Christakos, G., Modern Spatiotemporal Geostatistics (2000), Oxford University press: Oxford University press Oxford
[10] Cressie, N.; Huang, H.-C., Classes of nonseparable, spatio-temporal stationary covariance functions, JASA, 94, 1330-1340 (1999) · Zbl 0999.62073
[11] Davies, S.; Hall, P., Fractal analysis of surface roughness by using spatial data, J. Roy. Statist. Soc. B, 61, 3-37 (1999) · Zbl 0927.62118
[12] Dimri, V. P., Fractal Behaviour of the Earth System (2005), Springer: Springer New York
[13] Erdogan, M. B.; Ostrovskii, I. V., Analytic and asymptotic properties of generalized Linnik’s probability density, J. Math. Anal. Appl., 217, 555-578 (1998) · Zbl 0893.60004
[14] Falconer, K. J., Tangent fields and the local structure of random fields, J. Theoret. Probab., 15, 731-750 (2002) · Zbl 1013.60028
[15] Flandrin, P.; Borgnat, P.; Amblard, P. O., From stationarity to self-similarity, and back: Variations on the Lamperti transformation, (Rangarajan, G.; Ding, M., Processes with Long-Range Correlations, Theory and Applications. Processes with Long-Range Correlations, Theory and Applications, Lecture Notes in Physics, vol. 621 (2003), Springer: Springer New York)
[16] Garoni, T. M.; Frankel, N. E., Lévy flights: Exact results and asymptotics beyond all orders, J. Math. Phys., 43, 5090-5107 (2002) · Zbl 1060.60010
[17] Gelfand, I. M.; Shilov, G. E., Generalized functions, (Vol. 1: Properties and Operations, Vol. 2: Spaces of Fundamental and Generalized Functions (1977), Academic Press: Academic Press New York and London)
[18] Genton, M. G.; Perrin, O.; Taqqu, M. S., Self-similarity and Lamperti transformation for random fields, Stoch. Models, 23, 3, 397-411 (2007) · Zbl 1125.60046
[19] Gneiting, T., Nonseparable, stationary covariance functions for space-time data, JASA, 97, 590-600 (2002) · Zbl 1073.62593
[20] T. Gneiting, M.G. Genton, P. Guttorp, Geostatistical space-time models, stationarity, separability, and full symmetry, Technical report No. 475, University of Washington, Washington, DC, 2005; T. Gneiting, M.G. Genton, P. Guttorp, Geostatistical space-time models, stationarity, separability, and full symmetry, Technical report No. 475, University of Washington, Washington, DC, 2005 · Zbl 1282.86019
[21] Gneiting, T.; Schlather, M., Stochastic models that separate fractal dimension and the Hurst effect, SIAM Rev., 46, 269-282 (2004) · Zbl 1062.60053
[22] Gradshteyn, I. S.; Ryzhik, I. M., Tables of Integrals, Series and Products (2000), Academic Press: Academic Press San Diego · Zbl 0981.65001
[23] Herbin, E., From \(N\) parameter fractional Brownian motions to \(N\) parameter multifractional Brownian motions, Rocky Mountain J. Math., 36, 4, 1249-1284 (2006) · Zbl 1135.60020
[24] Houdre, C.; Villa, J., An example of infinite dimensional quasi-helix, Contemporary Math., 336, 195-201 (2003) · Zbl 1046.60033
[25] Istas, J.; Lang, G., Quadratic variations and estimation of local Holder index of a Gaussian process, Ann. Inst. Henri Poincare, 33, 407-436 (1997) · Zbl 0882.60032
[26] Kamont, A., On the fractional anisotropic Wiener field, Prob. Math. Statist., 16, 85-98 (1996) · Zbl 0857.60046
[27] J.T. Kent, A.T.A. Wood, Estimating fractal dimension of a locally self-similar Gaussian process by using increments, Statistics Research Report SRR 034-95, Centre for Mathematics and its Applications, Austalia National University, Canberra (1995); J. R. Statist. Soc. B 59, 1997, pp. 679-699; J.T. Kent, A.T.A. Wood, Estimating fractal dimension of a locally self-similar Gaussian process by using increments, Statistics Research Report SRR 034-95, Centre for Mathematics and its Applications, Austalia National University, Canberra (1995); J. R. Statist. Soc. B 59, 1997, pp. 679-699
[28] Korevaar, J., Tauberian Theory: A Century of Developments (2004), Springer: Springer New York · Zbl 1056.40002
[29] Kotz, S.; Ostrovskii, I. V.; Hayfavi, A., Analytic and asymptotic properties of Linnik’s probability density I, II, J. Math. Anal. Appl., 193, 353-371 (1995), 497-521 · Zbl 0831.60020
[30] Kotz, S.; Kozubowski, T. J.; Podgorski, K., The Laplace Distribution and Generalizations (2001), Birkhauser: Birkhauser Boston · Zbl 0977.62003
[31] Kyriakidis, P. C.; Journel, A. G., Geostatistical space-time models: A review, Math. Geology, 31, 651-684 (1999) · Zbl 0970.86013
[32] Lamperti, J. W., Semi-stable stochastic processes, Trans. Amer. Math. Soc., 104, 62-78 (1962) · Zbl 0286.60017
[33] Lang, G.; Roueff, F., Semi-parametric estimation of the Holder exponent of a stationary Gaussian process with minimax rates, Stat. Inference Stoch. Processes, 4, 283-306 (2001) · Zbl 1008.62081
[34] Leonenko, N. N.; Olenko, A. Ya., Tauberian and Abelian theorems for correlation function of a homogeneous isotropic random field, Ukrainain. Math. J., 43, 1652-1664 (1991) · Zbl 0753.60048
[35] Leonenko, N. N., Limit Theorems for Random Fields with Singular Spectrum (1999), Kluwer Academic Publishers: Kluwer Academic Publishers Netherlands · Zbl 0963.60048
[36] Lim, S. C.; Muniandy, S. M., Generalized Ornstein-Uhlenbeck processes and associated self-similar processes, J. Phys. A: Math. Gen., 36, 3961-3982 (2003) · Zbl 1083.60029
[37] Lim, S. C.; Li, Ming, Generalized Cauchy process and its application to relaxation phenomena, J. Phys. A: Math. Gen., 39, 2935-2951 (2006) · Zbl 1090.82013
[38] S.C. Lim, L.P. Teo, Fractional oscillator process with two indices, Preprint arXiv: 0804.3906; S.C. Lim, L.P. Teo, Fractional oscillator process with two indices, Preprint arXiv: 0804.3906 · Zbl 1156.82010
[39] Mateu, J.; Porcu, E.; Christakos, G.; Bevilacqua, M., Fitting negative spatial covariances to geothermal field temperatures in Nea Kessani (Greece), Envoronmetrics, 18, 759-773 (2007)
[40] Morariu, V.; Craciun, C.; Neamtu, S.; Iarinca, L.; Mihali, C., A fractal and long-range correlation analysis of plant nucleus ultrastructure, Romanian J. Biophys., 16, 243-252 (2006)
[41] Ostrovskii, I. V., Analytic and asymptotic properties of multivariate Linnik’s distribution, Math. Phys. Anal. Geom., 2, 436-455 (1995) · Zbl 0849.60012
[42] Palasantzas, G.; De Hosson, J. Th. M., Effect of roughness on the conductivity of semiconducting thin films/quantum wells with double rough boundaries, J. Appl. Phys., 93, 320-324 (2003)
[43] C. Park, et al. Long range dependence analysis of internet traffic, Preprint, 2004; C. Park, et al. Long range dependence analysis of internet traffic, Preprint, 2004
[44] R.F. Peltier, J.L. Vehel, Multifractional Brownian motion: Definition and preliminary results, INRIA Report 2645 (1995); R.F. Peltier, J.L. Vehel, Multifractional Brownian motion: Definition and preliminary results, INRIA Report 2645 (1995)
[45] Sahoo, N. K.; Thakur, S.; Tokas, R. B., Fractals and superstructures in gadolinia thin film morphology: Influence of process variables on their characteristic parameters, Thin Solid Films, 503, 85-95 (2006)
[46] Samorodnitsky, G.; Taqqu, M., Stable Non-Gaussian Random Processes (1994), Chapman & Hall: Chapman & Hall London · Zbl 0925.60027
[47] Stein, M. L., Space-time covariance function, JASA, 100, 310-321 (2005) · Zbl 1117.62431
[48] Stein, M. L., Seasonal variations in the spatial-temporal dependence of total column ozone, Envirometrics, 18, 71-86 (2007)
[49] Tscheschel, A.; Lacayo, J.; Stoyan, D., Statistical characterization of TEM images of silics-filled rubber, J. Microsc., 217, 75-82 (2005)
[50] Wood, A. T.A.; Chan, G., Increment-based estimators of fractal dimension for two-dimensional surface data, Stat. Sinica, 10, 343-376 (1994) · Zbl 0963.62090
[51] Y. Xiao, Sample path properties of anisotropic Gaussian random fields, unpublished, 2007. http://www.stt.msu.edu/xiaoyimin/AniGaussian3.pdf; Y. Xiao, Sample path properties of anisotropic Gaussian random fields, unpublished, 2007. http://www.stt.msu.edu/xiaoyimin/AniGaussian3.pdf
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.