×

zbMATH — the first resource for mathematics

Noncommutative instantons revisited. (English) Zbl 1160.81428
Summary: We find a new gauge in which U(1) noncommutative instantons are explicitly non-singular on noncommutative \(R^4\). We also present a pedagogical introduction into noncommutative gauge theories.

MSC:
81T13 Yang-Mills and other gauge theories in quantum field theory
81T75 Noncommutative geometry methods in quantum field theory
Keywords:
gauge theories
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] Snyder, H.S.: Quantized Space-Time. Phys. Rev. 71, 38 (1947);§nyder, H.S.: The Electromagnetic Field in Quantized Space-Time. Phys. Rev. 72, 68 (1947) · Zbl 0041.33118 · doi:10.1103/PhysRev.71.38
[2] Connes, A.: Noncommutative geometry. London: Academic Press, 1994 · Zbl 0818.46076
[3] Gonzalez-Arroyo, A., Korthals Altes, C.P.: Reduced model for large N continuum field theories. Phys. Lett. 131B, 396 (1983) · doi:10.1016/0370-2693(83)90526-9
[4] Filk, T.: Divergencies in a Field Theory on Quantum Space. Phys. Lett. 376B, 53 (1996) · Zbl 1190.81096 · doi:10.1016/0370-2693(96)00024-X
[5] Connes, A., Douglas, M., Schwarz, A.: JHEP 9802, 003 (1998)
[6] Douglas, M., Hull, C.: D-branes and the Noncommutative Torus. hep-th/9711165, JHEP 9802, 008 (1998) · Zbl 0957.81017
[7] Kontsevich, M.: Deformation quantization of Poisson manifolds. q-alg/9709040 · Zbl 1058.53065
[8] Cattaneo, A., Felder, G.: A Path Integral Approach to the Konstevich Quantization Formula. math.QA/9902090 · Zbl 1038.53088
[9] Witten, E.: Nucl. Phys. B268, 253 (1986)
[10] Schomerus, V.: D-Branes and Deformation Quantization. JHEP 9906, 030 (1999) · Zbl 0961.81066 · doi:10.1088/1126-6708/1999/06/030
[11] Nekrasov, N., Schwarz, A.S.: hep-th/9802068 Commun. Math. Phys. 198, 689 (1998) · Zbl 0923.58062 · doi:10.1007/s002200050490
[12] Losev, A., Moore, G., Nekrasov, N., Shatashvili, S.: Four dimensional avatars of two dimensional RCFT. hep-th/9509151, Nucl. Phys. Proc. Suppl. 46, 130–145 (1996) · Zbl 0957.81710
[13] Harvey, J.A., Moore, G.: Algebras, BPS States, and Strings. hep-th/9510182, Nucl. Phys. B463, 315–368 (1996) · Zbl 0912.53056
[14] Losev, A., Nekrasov, N., Shatashvili, S.: The Freckled Instantons. In: The many faces of the superworld: Yuri golfand memorial volume, Ed. by M. Shifman, River Edge, NJ: World Scientific, 2000 · Zbl 1009.81048
[15] Hitchin, N.J., Karlhede, A., Lindstrom, U., Rocek, M.: Commun. Math. Phys. 108, 535 (1987) · Zbl 0612.53043 · doi:10.1007/BF01214418
[16] Callan, C.G., Jr., Maldacena, J.M.: Nucl. Phys. B513, 198–212 (1998) hep-th/9708147
[17] Bak, D.: Phys. Lett. 471B, 149–154 (1999) hep-th/9910135 · Zbl 0987.81110 · doi:10.1016/S0370-2693(99)01354-4
[18] Moriyama, S.: hep-th/0003231
[19] Mateos, D.: Noncommutative vs. commutative descriptions of D-brane BIons. hep-th/0002020
[20] Gopakumar, R., Minwala, S., Strominger, A.: hep-th/0003160, JHEP 0005, 020 (2000)
[21] Losev, A., Moore, G., Shatashvili, S.: M&m’s. hep-th/9707250 Nucl. Phys. B522, 105–124 (1998) · Zbl 1047.81550
[22] Ho, P.-M.: hep-th/0003012
[23] Gross, D., Nekrasov, N.: Monopoles and strings in noncommutative gauge theory. hep-th/9905204 · Zbl 0965.81120
[24] Polychronakos, A.P.: Flux tube solutions in noncommutative gauge theories. hep-th/0007043 · Zbl 0976.81125
[25] Gross, D., Nekrasov, N.: Dynamics of strings in noncommutative gauge theory. hep-th/9907204 · Zbl 0965.81111
[26] Gross, D., Nekrasov, N.: Solitons in noncommutative gauge theories. To appear
[27] Corrigan, E., Goddard, P.: Construction of instanton and monopole solutions and reciprocity. Ann. Phys. 154, 253 (1984) · Zbl 0535.58025 · doi:10.1016/0003-4916(84)90145-3
[28] Aganagic, M., Gopakumar, R., Minwalla, S., Strominger, A.: Unstable Solitons in Noncommutative Gauge Theory. hep-th/0009142 · Zbl 1055.81073
[29] Donaldson, S.K.: Instantons and Geometric Invariant Theory. Commun. Math. Phys. 93, 453–460 (1984) · Zbl 0581.14008 · doi:10.1007/BF01212289
[30] Nakajima, H.: Lectures on Hilbert Schemes of Points on Surfaces. AMS University Lecture Series, Providence, RI: Aus, 1999, ISBN 0-8218-1956-9 · Zbl 0949.14001
[31] Braden, H., Nekrasov, N.: hep-th/9912019
[32] Furuuchi, K.: hep-th/9912047
[33] Furuuchi, K.: hep-th/0010006
[34] Aharony, O., Berkooz, M., Seiberg, N.: hep-th/9712117, Adv. Theor. Math. Phys. 2, 119–153 (1998)
[35] Aharony, O., Berkooz, M., Kachru, S., Seiberg, N., Silverstein, E.: hep-th/9707079, Adv. Theor. Math. Phys. 1, 148–157 (1998)
[36] Seiberg, N., Witten, E.: hep-th/9908142, JHEP 9909, 032 (1999)
[37] Strominger, A., Vafa, C.: Microscopic Origin of the Bekenstein-Hawking Entropy. hep-th/9601029, Phys. Lett. 379, 99–104 (1996) · Zbl 1376.83026
[38] Vafa, C., Witten, E.: A Strong Coupling Test of S-Duality. hep-th/9408074, Nucl. Phys. B431, 3–77 (1994) · Zbl 0964.81522
[39] Teo, E., Ting, C.: Monopoles, vortices and kinks in the framework of noncommutative geometry. Phys. Rev. D56, 2291–2302 (1997), hep-th/9706101
[40] Diaconescu, D.-E.: Nucl. Phys. B503, 220–238 (1997) hep-th/9608163
[41] Terashima, S.: Instantons in the U(1) Born-Infeld Theory and Noncommutative Gauge Theory. hep-th/9911245, Phys. Lett. 477B, 292–298 (2000) · Zbl 1050.81700
[42] Jiang, L.: Dirac Monopole in Non-Commutative Space. hep-th/0001073
[43] Hashimoto, K., Hata, H., Moriyama, S.: hep-th/9910196, JHEP 9912, 021 (1999); Hashimoto, A., Hashimoto, K.: hep-th/9909202, JHEP 9911, 005 (1999) Hashimoto, K., Hirayama, T.: hep-th/0002090
[44] Harvey, J., Kraus, P., Larsen, F., Martinec, E.: hep-th/0005031
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.