×

zbMATH — the first resource for mathematics

A comparative study on finite element methods for dynamic fracture. (English) Zbl 1160.74048
This paper presents a comparative study of finite element methods for dynamic fractures. It is shown that XFEM and interelement method show similar crack speeds and crack paths. However, both fail to predict a benchmark experiment without adjustment of energy release rate. It is also shown that the interelement method appears to be more apaptable. Experiments performed are interesting for practitioner.

MSC:
74S05 Finite element methods applied to problems in solid mechanics
74R10 Brittle fracture
Software:
LS-DYNA
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Ravi-Chandar K and Knauss WG (1984). An experimental investigation into dynamic fracture: II. microstructural aspects. Int J Fract 26: 65–80 · doi:10.1007/BF01152313
[2] Ravi-Chandar K and Knauss WG (1984). An experimental investigation into dynamic fracture: III. on steady-state crack propagation and crack branching. Int J Fract 26: 141–154 · doi:10.1007/BF01157550
[3] Ravi-Chandar K (2004). Dynamic fracture. Elsevier, Boston
[4] Marder M and Gross S (1995). Origin of crack tip instabilities. J Mech Phys Solids 43(1): 1–48 · Zbl 0878.73053 · doi:10.1016/0022-5096(94)00060-I
[5] Belytschko T and Black T (1999). Elastic crack growth in finite elements with minimal remeshing. Int J Numer Meth Eng 45(5): 601–620 · Zbl 0943.74061 · doi:10.1002/(SICI)1097-0207(19990620)45:5<601::AID-NME598>3.0.CO;2-S
[6] Moës N, Dolbow J and Belytschko T (1999). A finite element method for crack growth without remeshing. Int J Numer Meth Eng 46(1): 131–150 · Zbl 0955.74066 · doi:10.1002/(SICI)1097-0207(19990910)46:1<131::AID-NME726>3.0.CO;2-J
[7] Stolarska M, Chopp DL, Moës N and Belytschko T (2001). Modeling crack growth by level sets in the extended finite element method. Int J Numer Meth Eng 51(8): 943–960 · Zbl 1022.74049 · doi:10.1002/nme.201
[8] Belytschko T, Moës N, Usui S and Parimi C (2001). Arbitrary discontinuities in finite elements. Int J Numer Meth Eng 50(4): 993–1013 · Zbl 0981.74062 · doi:10.1002/1097-0207(20010210)50:4<993::AID-NME164>3.0.CO;2-M
[9] Babuška I and Melenk JM (1997). The partition of unity method. Int J Numer Meth Eng 40(4): 727–758 · Zbl 0949.65117 · doi:10.1002/(SICI)1097-0207(19970228)40:4<727::AID-NME86>3.0.CO;2-N
[10] Belytschko T, Chen H, Xu J and Zi G (2003). Dynamic crack propagation based on loss of hyperbolicity with a new discontinuous enrichment. Int J Numer Meth Eng 58: 1873–1905 · Zbl 1032.74662 · doi:10.1002/nme.941
[11] Song J-H, Areias PMA and Belytschko T (2006). A method for dynamic crack and shear band propagation with phantom nodes. Int J Numer Meth Eng 67: 868–893 · Zbl 1113.74078 · doi:10.1002/nme.1652
[12] Hansbo A and Hansbo P (2004). A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Comput Meth Appl Mech Eng 193: 3523–3540 · Zbl 1068.74076 · doi:10.1016/j.cma.2003.12.041
[13] Areias PMA and Belytschko T (2006). A comment on the article: a finite element method for simulation of strong and weak discontinuities in solid mechanics. Comput Meth Appl Mech Eng 195: 1275–1276 · Zbl 1378.74062 · doi:10.1016/j.cma.2005.03.006
[14] Réthoré J, Gravouil A, Combescure A (2004) A stable numerical scheme for the finite element simulation of dynamic crack propagation with remeshing. Comput Meth Appl Mech Eng 193:42–44 · Zbl 1112.74537
[15] Réthoré J, Gravouil A and Combescure A (2005). An energy-conserving scheme for dynamic crack growth using the extended fnite element method. Int J Numer Meth Eng 63: 631–659 · Zbl 1122.74519 · doi:10.1002/nme.1283
[16] Remmers JJC, Needleman A and Borst R (2003). A cohesive segments method for the simulation of crack growth. Comput Mech 31: 69–77 · Zbl 1038.74679 · doi:10.1007/s00466-002-0394-z
[17] Xu X-P and Needleman A (1994). Numerical simulation of fast crack growth in brittle solids. J Mech Phys Solids 42(9): 1397–1434 · Zbl 0825.73579 · doi:10.1016/0022-5096(94)90003-5
[18] Camacho G and Ortiz M (1996). Computational modelling of impact damage in brittle materials. Int J Solids Struct 33: 2899–2938 · Zbl 0929.74101 · doi:10.1016/0020-7683(95)00255-3
[19] Lemaitre J, Chaboche JL (1990) Mechanics of solid materials. Cambridge University Press, Cambridge. ISBN 0 521 32853 5 · Zbl 0743.73002
[20] Hallquist JO (1998). LS-DYNA theory manual. Livemore software technology corporation, USA
[21] Ortiz M and Pandolfi A (1999). A class of cohesive elements for the simulation of three-dimensional crack propagation. Int J Numer Meth Eng 44: 1267–1282 · Zbl 0932.74067 · doi:10.1002/(SICI)1097-0207(19990330)44:9<1267::AID-NME486>3.0.CO;2-7
[22] Fineberg J, Gross SP, Marder M and Swinney HL (1991). Instability in dynamic fracture. Phys Rev Lett 67: 457–460 · doi:10.1103/PhysRevLett.67.457
[23] Sharon E and Fineberg J (1999). Confirming the continuum theory of dynamic brittle fracture for fast cracks. Lett Nature 397: 333–335 · doi:10.1038/16891
[24] Ramulu M and Kobayashi AS (1985). Mechanics of crack curving and branching–a dynamic fracture analysis. Int J Fract 27: 187–201 · doi:10.1007/BF00017967
[25] Ravi-Chandar K (1998). Dynamic fracture of nominally brittle materials. Int J Fract 90: 83–102 · doi:10.1023/A:1007432017290
[26] Sharon E, Gross SP and Fineberg J (1995). Local crack branching as a mechanism for instability in dynamic fracture. Phys Rev Lett 74(25): 5096–5099 · doi:10.1103/PhysRevLett.74.5096
[27] Sharon E and Fineberg J (1996). Microbranching instability and the dynamic fracture of brittle materials. Phys Rev B 54(10): 7128–7139 · doi:10.1103/PhysRevB.54.7128
[28] Fineberg J, Sharon E and Cohen G (2003). Crack front waves in dynamic fracture. Int J Fract 119: 247–261 · doi:10.1023/A:1023954211188
[29] Lemaitre J (1971) Evaluation of dissipation and damage in metal submitted to dynamic loading. In: Proceedings ICM 1
[30] Kalthoff JF, Winkler S (1987) Failure mode transition at high rates of shear loading. International conference on impact loading and dynamic behavior of materials, vol 1. pp 185–195
[31] Decker RF (1979) Source book on maraging steels. American Society for Metals
[32] Lee YJ and Freund LB (1990). Fracture initiation due to asymmetric impact loading of an edge cracked plate. J Appl Mech ASME 57: 104–111 · doi:10.1115/1.2888289
[33] Kalthoff JF (2000). Modes of dynamic shear failure in solids. Int J Fract 101: 1–31 · doi:10.1023/A:1007647800529
[34] Sharon E, Gross SP and Fineberg J (1996). Energy dissipation in dynamic fracture. Phys Rev Lett 76(12): 2117–2120 · doi:10.1103/PhysRevLett.76.2117
[35] Bourdin B, Francfort GA and Marigo JJ (2000). Numerical experiments in revisited brittle fracture. J Mech Phys Solids 48(4): 797–826 · Zbl 0995.74057 · doi:10.1016/S0022-5096(99)00028-9
[36] Rabczuk T and Belytschko T (2004). Cracking particles: a simplified meshfree method for arbitray evolving cracks. Int J Numer Meth Eng 61(13): 2316–2343 · Zbl 1075.74703 · doi:10.1002/nme.1151
[37] Papoulia KD, Vavasis SA and Ganguly P (2006). Spatial convergence of crack nucleation using a cohesive finite-element model on a pinwhell-based mesh. Int J Numer Meth Eng 67: 1–16 · Zbl 1110.74854 · doi:10.1002/nme.1598
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.