×

zbMATH — the first resource for mathematics

Evolving BlenX programs to simulate the evolution of biological networks. (English) Zbl 1160.68678
Summary: We present a formal approach to study the evolution of biological networks. We use the Beta Workbench and its BlenX language to model and simulate networks in connection with evolutionary algorithms. Mutations are done on the structure of BlenX programs and networks are selected at any generation by using a fitness function. The feasibility of the approach is illustrated with a simple example.

MSC:
68U20 Simulation (MSC2010)
Software:
BlenX
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Dematté, L.; Priami, C.; Romanel, A.; Soyer, O., A formal and integrated framework to simulate evolution of biological pathways, (), 106-120 · Zbl 1160.68678
[2] Fogel, L.J.; Owens, A.J.; Walsh, M.J., Artificial intelligence through simulated evolution, (1966), John Wiley New York · Zbl 0148.40701
[3] Sharan, R.; Suthram, S.; Kelley, R.M.; Kuhn, T.; McCuine, S.; Uetz, P.; Sittler, T.; Karp, R.M.; Ideker, T., Conserved patterns of protein interaction in multiple species, Proc. natl. acad. sci., 6, 102, 1974-1979, (2005)
[4] Babu, M.; Teichmann, S.; Aravind, L.; Evolutionary, Dynamics of prokaryotic transcriptional regulators, J. mol. biol., 358, 614-633, (2006)
[5] Soyer, O.; Bonhoeffer, S., Evolution of complexity in signaling pathways, Proc. natl. acad. sci., 103, 16337-16342, (2006)
[6] Pfeiffer, T.; Schuster, S., Game-theoretical approaches to studying the evolution of biochemical systems, Trends biochem. sci., 1, 30, 20-25, (2005)
[7] Pfeiffer, T.; Soyer, O.; Bonhoeffer, S., The evolution of connectivity in metabolic networks, Plos biol., 7, 3, (2005)
[8] P, P.F.; Hakim, V., Design of genetic networks with specified functions by evolution in silico, Proc. natl. acad. sci., 2, 101, 580-585, (2004)
[9] Regev, A.; Shapiro, E., Cells as computation, Nature, (2002)
[10] Priami, C.; Regev, A.; Shapiro, E.; Silvermann, W., Application of a stochastic name-passing calculus to representation and simulation of molecular processes, Inform. process. lett., 80, 1, 25-31, (2001) · Zbl 0997.92018
[11] A. Phillips, L. Cardelli, A correct abstract machine for the stochastic pi-calculus, in: Bioconcur’04, ENTCS, August 2004
[12] Regev, A.; Silverman, W.; Shapiro, E., Representation and simulation of biochemical processes using the pi-calculus process algebra, Pac. symp. biocomput., 459-470, (2001)
[13] Dematté, L.; Priami, C.; Romanel, A., The beta workbench: A computational tool to study the dynamics of biological systems, Briefings in bioinformatics, (2008) · Zbl 1160.68678
[14] Dematté, L.; Priami, C.; Romanel, A., Modelling and simulation of biological processes in blenx, SIGMETRICS performance evaluation rev., 4, 35, 32-39, (2008) · Zbl 1160.68678
[15] C. Priami, P. Quaglia, Beta binders for biological interactions, in: CMSB, 2004, pp. 20-33 · Zbl 1088.68646
[16] A. Romanel, L. Dematté, C. Priami, The Beta Workbench, Technical Report TR-03-2007, The Microsoft Research - University of Trento Centre for Computational and Systems Biology, 2007 · Zbl 1277.68200
[17] Stock, A.M.; Robinson, V.L.; Goudreau, P.N., Two-component signal transduction, Annu. rev. biochem., 69, 183-215, (2000)
[18] Gillespie, D., A general method for numerically simulating the stochastic time evolution of coupled chemical reactions, J. phys. chem., 22, 403-434, (1976)
[19] Gillespie, D., Exact stochastic simulation of coupled chemical reactions, J. phys. chem., 81, 25, 2340-2361, (1977)
[20] Huang, C.Y.; Ferrell, J.E., Ultrasensitivity in the mitogen-activated protein kinase cascade, Proc. natl. acad. sci. USA, 93, 19, 10078-10083, (1996)
[21] Phillips, A.; Cardelli, L.; Castagna, G., ()
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.