zbMATH — the first resource for mathematics

Statistical challenges in the analysis of cosmic microwave background radiation. (English) Zbl 1160.62097
Summary: An enormous amount of observations on Cosmic Microwave Background (CMB) radiation has been collected in the last decade, and much more data are expected in the near future from planned or operating satellite missions. These datasets are a goldmine of information for cosmology and theoretical physics; their efficient exploitation posits several intriguing challenges from the statistical point of view. We review a number of open problems in CMB data analysis and we present applications to observations from the Wilkinson Microwave Anisotropy Probe (WMAP) mission.

62P35 Applications of statistics to physics
85A40 Astrophysical cosmology
85A25 Radiative transfer in astronomy and astrophysics
62M40 Random fields; image analysis
62M15 Inference from stochastic processes and spectral analysis
libmadam; Healpix
Full Text: DOI
[1] Adler, R. J. and Taylor, J. E. (2007). Random Fields and Geometry . Springer, New York. · Zbl 1149.60003
[2] Antoine, J.-P. and Vandergheynst, P. (1999). Wavelets on the sphere: A group-theoretic approach. Appl. Comput. Harmon. Anal. 7 262-291. · Zbl 0945.42023
[3] Antoine, J.-P. and Vandergheynst, P. (2007). Wavelets on the sphere and other conic sections. J. Fourier Anal. Appl. 13 369-386. · Zbl 1143.42036
[4] Babich, D., Creminelli, P. and Zaldarriaga, M. (2004). The shape of non-Gaussianities. J. Cosmology and Astroparticle Phys. 8 009.
[5] Baldi, P. and Marinucci, D. (2007). Some characterizations of the spherical harmonics coefficients for isotropic random fields. Statist. Probab. Lett. 77 490-496. · Zbl 1117.60053
[6] Baldi, P., Marinucci, D. and Varadarajan, V. S. V. (2007). On the characterization of isotropic Gaussian fields on homogeneous spaces of compact groups. Electron. Commun. Probab. 12 291-302. · Zbl 1128.60039
[7] Baldi, P., Kerkyacharian, G., Marinucci, D. and Picard, D. (2006). Asymptotics for spherical needlets. Ann. Statist. To appear. Available at · Zbl 1160.62087
[8] Baldi, P., Kerkyacharian, G. Marinucci, D. and Picard, D. (2007). Subsampling needlet coefficients on the sphere. Bernoulli . · Zbl 1200.62118
[9] Bartolo, N., Komatsu, E., Matarrese, S. and Riotto, A. (2004). Non-Gaussianity from inflation: Theory and observations. Phys. Rept. 402 103-266.
[10] Bennett, C. L., Halpern, M., Hinshaw, G., Jarosik, N., Kogut, A., Limon, M., Meyer, S. S., Page, L., Spergel, D. N., Tucker, G. S., Wollack, E., Wright, E. L., Barnes, C., Greason, M. R., Hill, R. S., Komatsu, E., Nolta, M. R., Odegard, N., Peiris, H. V., Verde, L. and Weiland, J. L. (2003). First-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: Preliminary maps and basic results. Astrophys. J. Suppl. Ser. 148 1-27.
[11] Bishop, R. L. and Goldberg, S. (1980). Tensor Analysis on Manifolds . Dover, New York. · Zbl 0218.53021
[12] Cabella, P., Hansen, F. K., Liguori, M., Marinucci, D., Matarrese, S., Moscardini, L. and Vittorio, N. (2005). Primordial non-Gaussianity: Local curvature method and statistical significance of constraints on f NL from WMAP data. Mon. Not. Roy. Astron. Soc. 358 684-692.
[13] Cabella, P., Hansen, F. K., Liguori, M., Marinucci, D., Matarrese, S., Moscardini, L. and Vittorio, N. (2006). The integrated bispectrum as a test of CMB non-Gaussianity: Detection power and limits on f NL with WMAP data. Mon. Not. Roy. Astron. Soc. 369 819-824.
[14] Cruz, M., Cayon, L., Martinez-Gonzalez, E., Vielva, P. and Jin, J. (2007). The non-Gaussian cold spot in the 3-year WMAP data. Astrophys. J. 655 11-20.
[15] Cruz, M., Cayon, L., Martinez-Gonzalez, E. and Vielva, P. (2006). The non-Gaussian cold spot in WMAP: Significance, morphology and foreground contribution. Mont. Not. Roy. Astron. Soc. 369 57-67.
[16] de Gasperis, G., Balbi, A., Cabella, P., Natoli, P. and Vittorio, N. (2005). ROMA: A map-making algorithm for polarised CMB data sets. Astronomy and Astrophysics 436 1159-1165.
[17] Dodelson, S. (2003). Modern Cosmology . Academic Press, Amsterdam.
[18] Doré, O., Colombi, S. and Bouchet, F. R. (2003). Probing non-Gaussianity using local curvature. Mon. Not. Roy. Astron. Soc. 344 905-916. Available at
[19] Doroshkevich, A. G., Naselsky, P. D., Verkhodanov, O. V., Novikov, D. I., Turchaninov, V. I., Novikov, I. D., Christensen, P. R. and Chiang, L.-Y. (2005). Gauss-Legendre Sky Pixelization (GLESP) for CMB Maps. Int. J. Mod. Phys. D 14 275. Available at · Zbl 1071.83506
[20] Guilloux, F., Fay, G. and Cardoso, J.-F. (2007). Practical wavelet design on the sphere. Appl. Comput. Harmon. Anal. · Zbl 1162.42017
[21] Gorski, K. M., Hivon, E., Banday, A. J., Wandelt, B. D., Hansen, F. K., Reinecke, M. and Bartelman, M. (2005). HEALPix-a framework for high resolution discretization, and fast analysis of data distributed on the sphere. Astrophys. J. 622 759-771. Available at
[22] Hamann, J. and Wong, Y. Y. Y. (2008). The effects of Cosmic Microwave Background (CMB) temperature uncertainties on cosmological parameter estimation. Journal of Cosmology and Astroparticle Physics Issue 03 025.
[23] Hansen, F. K., Cabella, P., Marinucci, D. and Vittorio, N. (2004). Asymmetries in the local curvature of the WMAP data. Astrophys. J. Lett. L67-L70.
[24] Hausman, J. A. (1978). Specification tests in econometrics. Econometrica 6 1251-1271. · Zbl 0397.62043
[25] Hikage, C., Matsubara, T., Coles, P., Liguori, M., Hansen, F. K. and Matarrese, S. (2008). Primordial Non-Gaussianity from Minkowski functionals of the WMAP temperature anisotropies. Preprint. Available at arXiv:
[26] Hinshaw, G., Weiland, J. L., Hill, R. S., Odegard, N., Larson, D., Bennett, C. L., Dunkley, J., Gold, B., Greason, M. R., Jarosik, N., Komatsu, E., Nolta, M. R., Page, L., Spergel, D. N., Wollack, E., Halpern, M., Kogut, A., Limon, M., Meyer, S. S., Tucker, G. S. and Wright, E. L. (2008). Five-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: Data processing, sky maps, and basic results. Eprint. Available at arXiv:
[27] Hivon, E., Gorski, K. M., Netterfield, C. B., Crill, B. P., Prunet, S. and Hansen, F. K. (2002). MASTER of the cosmic microwave background anisotropy power spectrum: A fast method for statistical analysis of large and complex cosmic microwave background data sets. Astrophys. J. 567 2-17.
[28] Hu, W. (2001). Angular trispectrum of the cosmic microwave background. Phys. Rev. D 64 id.083005.
[29] Keihänen, E., Kurki-Suonio, H. and Poutanen, T. (2005). MADAM-a map-making method for CMB experiments. Mont. Not. Roy. Astron. Soc. 360 390-400.
[30] Kerkyacharian, G., Petrushev, P., Picard, D. and Willer, T. (2007). Needlet algorithms for estimation in inverse problems. Electron. J. Statist. 1 30-76. · Zbl 1320.62072
[31] Lan, X. and Marinucci, D. (2008). The needlets bispectrum. Electron. J. Statist. 2 332-367. · Zbl 1320.62106
[32] Marinucci, D. (2006). High-resolution asymptotics for the angular bispectrum of spherical random fields. Ann. Statist. 34 1-41. Available at · Zbl 1104.60020
[33] Marinucci, D. (2008). A central limit theorem and higher order results for the angular bispectrum. Probab. Theory Related Fields 3-4 389-409. Available at · Zbl 1141.60028
[34] Marinucci, D. and Peccati, G. (2007). Group representations and high-resolution central limit theorems for subordinated spherical random fields. Available at arXiv: · Zbl 1284.60099
[35] Marinucci, D. and Peccati, G. (2008). Representations of SO (3) and angular polyspectra. Submitted. Available at arXiv: · Zbl 1216.60027
[36] Marinucci, D., Pietrobon, D., Balbi, A., Baldi, P., Cabella, P., Kerkyacharian, G., Natoli, P., Picard, D. and Vittorio, N. (2008). Spherical needlets for CMB data analysis. Mont. Not. Roy. Astron. Soc. 383 539-545. Available at
[37] McEwen, J. D., Vielva, P., Wiaux, Y., Barreiro, R. B., Cayon, L., Hobson, M. P., Lasenby, A. N., Martinez-Gonzalez, E. and Sanz, J. (2007). Cosmological applications of a wavelet analysis on the sphere. J. Fourier Anal. Appl. 13 495-510. · Zbl 1206.85002
[38] Narcowich, F. J., Petrushev, P. and Ward, J. D. (2006a). Localized tight frames on spheres. SIAM J. Math. Anal. 38 574-594. · Zbl 1143.42034
[39] Narcowich, F. J., Petrushev, P. and Ward, J. D. (2006b). Decomposition of Besov and Triebel-Lizorkin spaces on the sphere. J. Funct. Anal. 238 530-564. · Zbl 1114.46026
[40] Natoli, P., Degasperis, G., Marinucci, D. and Vittorio, N. (2002). Non-iterative methods to estimate the in-flight noise properties of CMB detectors. Astronomy and Astrophysics 383 1100-1112.
[41] Park, C.-G. (2004). Non-Gaussian signatures in the temperature fluctuation observed by the Wilkinson microwave anisotropy probe. Mont. Not. Roy. Astron. Soc. 349 313-320.
[42] Patanchon, G., Delabrouille, J., Cardoso, J.-F. and Vielva, P. (2005). CMB and foreground in WMAP first-year data. Mont. Not. Roy. Astronom. Soc. 364 1185-1194.
[43] Pietrobon, D., Balbi, A. and Marinucci, D. (2006). Integrated Sachs-Wolfe effect from the cross correlation of WMAP3 year and the NRAO VLA sky survey data: New results and constraints on dark energy. Phys. Rev. D 74 043524.
[44] Polenta, G., Marinucci, D., Balbi, A., De Bernardis, P., Hivon, E., Masi, S., Natoli, P. and Vittorio, N. (2005). Unbiased estimation of angular power spectra. J. Cosmology and Astroparticle Physics Issue 11 n. 1.
[45] Seljak, U. and Zaldarriaga, M. (1996). Line-of-sight integration approach to cosmic microwave background anisotropies. Astrophys. J. 469 437.
[46] Smoot, G. F., Bennett, C. L., Kogut, A., Wright, E. L., Aymon, J., Boggess, N. W., Cheng, E. S., de Amici, G., Gulkis, S., Hauser, M. G., Hinshaw, G., Jackson, P. D., Janssen, M., Kaita, E., Kelsall, T., Keegstra, P., Lineweaver, C., Loewenstein, K., Lubin, P., Mather, J., Meyer, S. S., Moseley, S. H., Murdock, T., Rokke, L., Silverberg, R. F., Tenorio, L., Weiss, R. and Wilkinson, D. T. (1992). Structure in the COBE differential microwave radiometer first-year maps. Astrophys. J. Part 2 Lett. 396 L1-L5.
[47] Varshalovich, D. A., Moskalev, A. N. and Khersonskii, V. K. (1988). Quantum Theory of Angular Momentum . World Scientific, Singapore. · Zbl 0725.00003
[48] Vielva, P., Martínez-González, E., Gallegos, J. E., Toffolatti, L. and Sanz, J. L. (2003). Point source detection using the spherical Mexican Hat Wavelet on simulated all-sky planck maps. Mont. Not. Roy. Astron. Soc. 344 89-104.
[49] Vilenkin, N. J. and Klymik, A. U. (1991). Representation of Lie Groups and Special Functions . 1 . Simplest Lie Groups , Special Functions and Integral Transforms. Mathematics and Its Applications ( Soviet Series ) 72 . Kluwer Academic, Dordrecht. · Zbl 0742.22001
[50] Yadav, A. P. S. and Wandelt, B. D. (2007). Detection of primordial non-Gaussianity ( f NL ) in the WMAP 3-year data at above 99.5% confidence. Available at arXiv:
[51] Wiaux, Y., Jacques, L. and Vandergheynst, P. (2005). Correspondence principle between spherical and Euclidean wavelets. Astrophys. J. 632 15-28.
[52] Wiaux, Y., McEwen, J. D. and Vielva, P. (2007). Complex data processing: Fast wavelet analysis on the sphere. J. Fourier Anal. Appl. 13 477-494. · Zbl 1124.65125
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.