×

zbMATH — the first resource for mathematics

Imprecise probabilistic beliefs as a context for decision-making under ambiguity. (English) Zbl 1159.91349
Summary: Coherent imprecise probabilistic beliefs are modeled as incomplete comparative likelihood relations admitting a multiple-prior representation. Under a structural assumption of equidivisibility, we provide an axiomatization of such relations and show uniqueness of the representation. In the second part of the paper, we formulate a behaviorally general “likelihood compatibility” axiom relating preferences and probabilistic beliefs and characterize its implications for the class of “invariant biseparable” preferences that includes the MEU and CEU models among others.

MSC:
91B06 Decision theory
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] D. Ahn, Ambiguity without a state space, Mimeo, UC Berkeley, 2005 · Zbl 1141.91380
[2] Aliprantis, C.; Border, K., Infinite dimensional analysis, (1999), Springer Berlin · Zbl 0938.46001
[3] Anscombe, F.J.; Aumann, R.J., A definition of subjective probability, Ann. of math. stat., 34, 199-205, (1963) · Zbl 0114.07204
[4] Bewley, T.F., Knightian decision theory, part I, Decis. econ. finance, 25, 79-110, (2002), first version 1986 · Zbl 1041.91023
[5] Casadesus, R.; Klibanoff, P.; Ozdenoren, E., Maxmin expected utility over savage acts with a set of priors, J. econ. theory, 92, 35-65, (2000) · Zbl 0980.91017
[6] Chew, S.-H.; Sagi, J., Small worlds: modeling attitudes toward sources of uncertainty, J. econ. theory, 139, 1-24, (2008) · Zbl 1132.91370
[7] J. Eichberger, S. Grant, D. Kelsey, Differentiating ambiguity—A comment, Mimeo, 2006 · Zbl 1149.91025
[8] Ellsberg, D., Risk, ambiguity, and the savage axioms, Quart. J. econ., 75, 643-669, (1961) · Zbl 1280.91045
[9] Epstein, L.; Zhang, J.-K., Subjective probabilities on subjectively unambiguous events, Econometrica, 69, 265-306, (2001) · Zbl 1020.91048
[10] H. Ergin, F. Gul, A subjective theory of compound lotteries, Mimeo, 2004 · Zbl 1162.91331
[11] de Finetti, B., Sul significato doggetivo Della probabilità, Fund. math., 17, 298-329, (1931) · JFM 57.0608.07
[12] de Finetti, B., La prevision, ses lois logiques, ses sources subjectives, Ann. inst. H. poincare, 7, 1-68, (1937) · JFM 63.1070.02
[13] Fishburn, P., Utility theory for decision making, (1970), John Wiley and Sons New York · Zbl 0213.46202
[14] Fishburn, P., The axioms of subjective probability, Statist. sci., 1, 335-358, (1986) · Zbl 0604.60004
[15] Gajdos, T.; Tallon, J.-M.; Vergnaud, J.-C., Decision making with imprecise probabilistic information, J. math. econ., 40, 6, 647-681, (2004) · Zbl 1106.91022
[16] Gajdos, T.; Hayashi, T.; Tallon, J.-M.; Vergnaud, J.-C., Attitude toward imprecise information, J. econ. theory, 140, 23-56, (2008) · Zbl 1136.91369
[17] Ghirardato, P.; Marinacci, M., Ambiguity made precise: A comparative foundation, J. econ. theory, 102, 251-289, (2002) · Zbl 1019.91015
[18] Ghirardato, P.; Maccheroni, F.; Marinacci, M.; Siniscalchi, M., A subjective spin on roulette wheels, Econometrica, 71, 1897-1908, (2003) · Zbl 1152.91404
[19] Ghirardato, P.; Maccheroni, F.; Marinacci, M., Differentiating ambiguity and ambiguity attitude, J. econ. theory, 118, 133-173, (2004) · Zbl 1112.91021
[20] P. Ghirardato, F. Maccheroni, M. Marinacci, Revealed ambiguity and its consequences I: Unambiguous acts and events, Mimeo, 2005 · Zbl 1159.91344
[21] Gilboa, I.; Schmeidler, D., Maxmin expected utility with a non-unique prior, J. math. econ., 18, 141-153, (1989) · Zbl 0675.90012
[22] Gilboa, I.; Samet, D.; Schmeidler, D., Utilitarian aggregation of beliefs and tastes, J. polit. economy, 112, 932-938, (2004)
[23] Grant, S.; Karni, E., A theory of quantifiable beliefs, J. math. econ., 40, 515-546, (2004) · Zbl 1101.91321
[24] Heath, D.; Sudderth, W., On a theorem of de Finetti, oddsmaking, and game theory, Ann. of math. stat., 43, 2072-2077, (1972) · Zbl 0256.90068
[25] Jaffray, J.-Y., Linear utility theory for belief functions, Oper. res. lett., 9, 107-112, (1989) · Zbl 0673.90010
[26] Karni, E., Probabilities and beliefs, J. risk uncertainty, 13, 249-262, (1996) · Zbl 0876.90039
[27] Karni, E.; Schmeidler, D.; Vind, K., On state dependent preference and subjective probabilities, Econometrica, 51, 1021-1032, (1983) · Zbl 0516.90008
[28] Keynes, J.M., A treatise on probability, (1921), Macmillan London · Zbl 0121.34903
[29] Klibanoff, P.; Marinacci, M.; Mukerjii, S., A smooth model of decision making under ambiguity, Econometrica, 73, 1849-1892, (2005) · Zbl 1151.91372
[30] Koopman, B.O., The bases of probability, Bull. amer. math. soc., 46, 763-774, (1940) · Zbl 0024.05002
[31] Koopman, B.O., The axioms and algebra of intuitive probability, Ann. of math., 41, 269-292, (1940) · Zbl 0024.05001
[32] I. Kopylov, A parametric model of ambiguity hedging, Mimeo, UC Irvine, 2006
[33] Kopylov, I., Subjective probability on ‘small’ domains’, J. econ. theory, 133, 236-265, (2007) · Zbl 1280.60008
[34] Kraft, C.; Pratt, J.; Seidenberg, A., Intuitive probability on finite sets, Ann. of math. stat., 30, 408-419, (1959) · Zbl 0173.19606
[35] Levi, I., The enterprise of knowledge, (1980), MIT Press Cambridge, MA
[36] Lyapunov, A.A., Sur LES fonctions vecteurs completement additives, Izv. akad. nauk SSR. ser. mat., 4, 465-478, (1940) · Zbl 0024.38504
[37] Maccheroni, F.; Marinacci, M.; Rustichini, A., Ambiguity aversion, robustness, and the variational representation of preferences, Econometrica, 74, 1447-1498, (2006) · Zbl 1187.91066
[38] Machina, M.; Schmeidler, D., A more robust definition of subjective probability, Econometrica, 60, 745-780, (1992) · Zbl 0763.90012
[39] Marinacci, M., Probabilistic sophistication and multiple priors, Econometrica, 70, 755-764, (2002) · Zbl 1103.91333
[40] Mongin, P., Consistent Bayesian aggregation, J. econ. theory, 66, 313-351, (1995) · Zbl 0845.90012
[41] K. Nehring, A theory of rational decision with vague beliefs, Ph.D. dissertation, Harvard University, 1991
[42] Nehring, K., Foundations for the theory of rational choice with vague priors, (), 231-242
[43] K. Nehring, Preference and belief without the independence axiom, talk presented at LOFT2 in Torino, Italy, 1996
[44] Nehring, K., Capacities and probabilistic beliefs: A precarious coexistence, Math. soc. sci., 38, 197-213, (1999) · Zbl 1073.91571
[45] Nehring, K., Rational choice under ignorance, Theory dec., 48, 205-240, (2000) · Zbl 0967.91012
[46] K. Nehring, Ambiguity in the context of probabilistic beliefs, Mimeo, 2001
[47] K. Nehring, Bernoulli without Bayes: A theory of utility-sophisticated preference, Mimeo, UC Davis, 2007
[48] K. Nehring, Imprecise probabilistic beliefs as a context for decision-making under ambiguity, earlier working paper version, UC Davis, 2007
[49] K. Nehring, Utility sophistication in the Anscombe-Aumann framework, Mimeo, UC Davis, 2007
[50] Olszewski, W., Preferences over sets of lotteries, Rev. econ. stud., 74, 567-595, (2007) · Zbl 1297.91051
[51] Regoli, G., Comparative probability orderings, (1998), Documentation section, Society for Imprecise Probability Theory and Applications (SIPTA), URL
[52] Savage, L.J., The foundations of statistics, (1972), Dover · Zbl 0121.13603
[53] Schervish, M.; Seidenfeld, T.; Kadane, J., State-dependent utilities, J. amer. statistical assoc., 85, 840-847, (1990) · Zbl 0726.90011
[54] Schmeidler, D., Subjective probability and expected utility without additivity, Econometrica, 57, 571-587, (1989) · Zbl 0672.90011
[55] Segal, U., Two stage lotteries without the reduction axiom, Econometrica, 58, 349-378, (1990) · Zbl 0728.90013
[56] K. Seo, Ambiguity and second order beliefs, Econometrica (2009), forthcoming · Zbl 1178.91053
[57] Siniscalchi, M., A behavioral characterization of plausible priors, J. econ. theory, 128, 91-135, (2006) · Zbl 1151.91034
[58] Smith, C., Consistency in statistical inference and decision, J. roy. statistical society ser. B, 22, 1-15, (1961) · Zbl 0124.09603
[59] M. Stinchcombe, Choice and games with ambiguity as sets of probabilities, Mimeo, University of Texas, Austin, 2003
[60] Tversky, A.; Wakker, P., Risk, attitudes and decision weights, Econometrica, 63, 1255-1280, (1995) · Zbl 0836.90007
[61] Walley, P., Statistical reasoning with imprecise probabilities, (1991), Chapman and Hall London · Zbl 0732.62004
[62] T. Wang, A class of multi-prior preferences, Discussion paper, University of British Columbia, 2003
[63] Zhang, J., Qualitative probabilities on λ-systems, Math. soc. sci., 38, 11-20, (1999) · Zbl 0944.91010
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.