×

zbMATH — the first resource for mathematics

An efficient algorithm for solving a quadratic programming model with application in credit card holder’s behaviour. (English) Zbl 1159.90469

MSC:
90C20 Quadratic programming
91B74 Economic models of real-world systems (e.g., electricity markets, etc.)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] DOI: 10.1002/mcda.327 · Zbl 1060.91046 · doi:10.1002/mcda.327
[2] DOI: 10.1142/S0219622005001775 · doi:10.1142/S0219622005001775
[3] de Panne C. V., Methods for Linear and Quadratic Programming (1975) · Zbl 0348.90094
[4] DOI: 10.1016/0378-4266(78)90012-2 · doi:10.1016/0378-4266(78)90012-2
[5] DOI: 10.1016/0377-2217(81)90048-5 · Zbl 0456.90075 · doi:10.1016/0377-2217(81)90048-5
[6] DOI: 10.1111/j.1540-5915.1986.tb00218.x · doi:10.1111/j.1540-5915.1986.tb00218.x
[7] DOI: 10.1111/j.1540-5915.1986.tb00244.x · doi:10.1111/j.1540-5915.1986.tb00244.x
[8] Gill P. E., Practical Optimization (1981) · Zbl 0503.90062
[9] DOI: 10.1111/j.1540-5915.1990.tb01249.x · doi:10.1111/j.1540-5915.1990.tb01249.x
[10] Han J. W., Data Mining: Concepts and Techniques (2001)
[11] Kachigan S. K., Multivariate Statistical Analysis: A Conceptual Introduction (1991)
[12] Kendall M. G., Multivariate Analysis (1966) · Zbl 0317.62030
[13] DOI: 10.1287/mnsc.31.2.123 · doi:10.1287/mnsc.31.2.123
[14] Kou G., Linux Based Multiple Linear Programming Classification Program: version 1.0 (2002)
[15] DOI: 10.1080/10556780310001600953 · Zbl 1106.90374 · doi:10.1080/10556780310001600953
[16] Luenberger D. G., Linear and Nonlinear Programming (1984) · Zbl 0571.90051
[17] Morrison D. F., Multivariate Statistical Methods (1976) · Zbl 0355.62049
[18] Olson D., Introduction to Business Data Mining (2007)
[19] Peng Y., Advanced Modeling and Optimization 4 pp 39–
[20] Quinlan J., Machine Learning 1 pp 81– · Zbl 1184.68423
[21] DOI: 10.1287/opre.42.4.589 · Zbl 0815.90110 · doi:10.1287/opre.42.4.589
[22] DOI: 10.1142/4000 · doi:10.1142/4000
[23] Y. Shi, IEBM Handbook of Information Technology in Business, ed. M. Zeleny (International Thomson Publishing, Europe, 2000) pp. 490–495.
[24] DOI: 10.1142/S0219622002000038 · doi:10.1142/S0219622002000038
[25] DOI: 10.1007/978-3-642-56680-6_39 · doi:10.1007/978-3-642-56680-6_39
[26] Y. Shi and P. L. Yu, Multiple Criteria Decision Making and Risk Analysis and Applications, eds. B. Karpak and S. Zionts (Springer-Verlag, Berlin, 1989) pp. 165–203.
[27] DOI: 10.1287/mnsc.38.7.926 · Zbl 0763.90062 · doi:10.1287/mnsc.38.7.926
[28] DOI: 10.1287/mnsc.19.8.936 · Zbl 0264.90008 · doi:10.1287/mnsc.19.8.936
[29] DOI: 10.1080/0020739970280204 · Zbl 0883.62064 · doi:10.1080/0020739970280204
[30] Liu Y., Computer and Industrial Engineering pp 563–
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.