×

zbMATH — the first resource for mathematics

The multi-mode stretched spiral vortex in homogeneous isotropic turbulence. (English) Zbl 1159.76334
Summary: The stretched spiral vortex is identified using direct numerical simulation (DNS) data for homogeneous isotropic turbulence and its properties are studied. Its genesis, growth and annihilation are elucidated, and its role in the generation of turbulence is shown. Aside from the two symmetric modes of configurations with regard to the vorticity alignment along two spiral sheets and the vortex tube in the core region studied in previous works, a third asymmetric mode is found. One of the two symmetric modes and the asymmetric mode are created not by a conventional rolling-up of a single vortex sheet but through the interaction among several sheets. The stagnation flow caused by the two sheets converges to form recirculating flow through its interaction with the vortex along the third sheet. This recirculating flow strains and stretches the sheets. The vortex tube is formed by axial straining, lowering of pressure and the intensification of the swirling motion in the recirculating region. As a result of the differential rotation induced by the tube and that self-induced by the sheet, the vortex sheets are entrained by the tube and form spiral turns. The transition between the three modes is examined. The initial configuration is in one of two symmetric modes, but it is transformed into another set of two modes due to the occurrence of reorientation in the vorticity direction along the stretched sheets. The symmetric mode tends to be more persistent than the asymmetric mode, among the two transformed modes. The tightening of the spiral turns of the spiral sheets produces a cascade of velocity fluctuations to smaller scales and generates a strongly intermittent dissipation field. To precisely capture the spiral turns, a grid resolution with at least \(k_{\max}\overline{\eta}\approx 4.0\) \((k_{\max}\) is the largest wavenumber, is the averaged Kolmogorov scale) is required. At a higher Reynolds number, self-similar spiral vortices are successively produced by the instability cascade along the stretched vortex sheets. A cluster consisting of spiral vortices with an extensive range of length scales is formed and this cluster induces an energy cascade.

MSC:
76F05 Isotropic turbulence; homogeneous turbulence
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] DOI: 10.1017/S0022112097007246 · Zbl 0913.76026 · doi:10.1017/S0022112097007246
[2] DOI: 10.1017/S0022112085001136 · Zbl 0587.76080 · doi:10.1017/S0022112085001136
[3] DOI: 10.1017/S0022112098002341 · Zbl 0933.76034 · doi:10.1017/S0022112098002341
[4] DOI: 10.1063/1.2147610 · Zbl 1188.76063 · doi:10.1063/1.2147610
[5] DOI: 10.1017/S0022112003005299 · Zbl 1063.76568 · doi:10.1017/S0022112003005299
[6] DOI: 10.1063/1.1410981 · Zbl 1184.76230 · doi:10.1063/1.1410981
[7] DOI: 10.1103/PhysRevLett.88.244501 · doi:10.1103/PhysRevLett.88.244501
[8] DOI: 10.1063/1.1566753 · Zbl 1186.76556 · doi:10.1063/1.1566753
[9] DOI: 10.1017/S0022112094003319 · Zbl 0800.76157 · doi:10.1017/S0022112094003319
[10] DOI: 10.1017/S0022112095003533 · Zbl 0850.76393 · doi:10.1017/S0022112095003533
[11] DOI: 10.1063/1.858741 · Zbl 0790.76039 · doi:10.1063/1.858741
[12] DOI: 10.1016/0021-9991(83)90045-1 · Zbl 0519.76002 · doi:10.1016/0021-9991(83)90045-1
[13] DOI: 10.1063/1.858746 · Zbl 0791.76041 · doi:10.1063/1.858746
[14] DOI: 10.1023/B:APPL.0000044408.46141.26 · Zbl 1081.76564 · doi:10.1023/B:APPL.0000044408.46141.26
[15] DOI: 10.1103/PhysRevLett.91.144501 · doi:10.1103/PhysRevLett.91.144501
[16] DOI: 10.1080/03091928408248182 · Zbl 0603.76055 · doi:10.1080/03091928408248182
[17] DOI: 10.1063/1.869575 · Zbl 1185.76674 · doi:10.1063/1.869575
[18] DOI: 10.1063/1.857878 · Zbl 0718.76050 · doi:10.1063/1.857878
[19] DOI: 10.1017/S0022112005004040 · Zbl 1070.76033 · doi:10.1017/S0022112005004040
[20] Burgers, Adv. Appl. Mech. 1 pp 171– (1948)
[21] DOI: 10.1063/1.858333 · doi:10.1063/1.858333
[22] Brachet, Phys. Fluids 4 pp 2845– (1992) · Zbl 0775.76026 · doi:10.1063/1.858513
[23] DOI: 10.1063/1.2227003 · Zbl 1185.76715 · doi:10.1063/1.2227003
[24] DOI: 10.1063/1.868879 · Zbl 1025.76528 · doi:10.1063/1.868879
[25] DOI: 10.1063/1.868213 · Zbl 0825.76277 · doi:10.1063/1.868213
[26] DOI: 10.1063/1.869228 · Zbl 1185.76735 · doi:10.1063/1.869228
[27] DOI: 10.1063/1.1388207 · Zbl 1184.76440 · doi:10.1063/1.1388207
[28] DOI: 10.1017/S0022112084001853 · Zbl 0561.76039 · doi:10.1017/S0022112084001853
[29] DOI: 10.1017/S0022112095000152 · Zbl 0831.76026 · doi:10.1017/S0022112095000152
[30] DOI: 10.1017/S0022112098003024 · Zbl 0933.76035 · doi:10.1017/S0022112098003024
[31] DOI: 10.1017/S0022112084001348 · Zbl 0559.76020 · doi:10.1017/S0022112084001348
[32] Moore, Proc. R. Soc. Lond. 399 pp 367– (1985)
[33] DOI: 10.1017/S0022112096008385 · Zbl 0896.76010 · doi:10.1017/S0022112096008385
[34] DOI: 10.1017/S0022112096000031 · Zbl 0860.76040 · doi:10.1017/S0022112096000031
[35] DOI: 10.1063/1.858585 · Zbl 0780.76040 · doi:10.1063/1.858585
[36] DOI: 10.1063/1.863957 · Zbl 0536.76034 · doi:10.1063/1.863957
[37] DOI: 10.1143/JPSJ.69.3466 · doi:10.1143/JPSJ.69.3466
[38] DOI: 10.1016/S0997-7546(98)80005-8 · Zbl 0921.76072 · doi:10.1016/S0997-7546(98)80005-8
[39] DOI: 10.1017/S0022112094002570 · Zbl 0864.76024 · doi:10.1017/S0022112094002570
[40] DOI: 10.1063/1.1897011 · Zbl 1187.76261 · doi:10.1063/1.1897011
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.