×

zbMATH — the first resource for mathematics

Underwater sand bed erosion and internal jump formation by travelling plane jets. (English) Zbl 1159.76306
Summary: Theory and experiments are used to investigate the water and sediment motion induced along a sea bed by travelling plane jets. Steadily moving jets are considered, and represent an idealization of the tools mounted on ships and remotely operated vehicles (ROVs) for injection dredging and trenching. The jet-induced turbulent currents simultaneously suspend sand from the bed and entrain water from the ambient. To describe these processes, a shallow-flow theory is proposed in which the turbulent current is assumed stratified into sediment-laden and sediment-free sublayers. The equations are written in curvilinear coordinates attached to the co-evolving bed profile. A sharp interface description is then adopted to account rigorously for mass and momentum exchanges between the bed, current and ambient, including their effects on the balance of mechanical energy. Travelling-wave solutions are obtained, in which the jet-induced current scours a trench of permanent form in a frame of reference moving with the jetting tool. Depending on the operating parameters, it is found that the sediment-laden current may remain supercritical throughout the trench, or be forced to undergo an internal hydraulic jump. These predictions are confirmed by laboratory experiments. For flows with or without jump in which the current remains attached to the bed, bottom profiles computed by the theory compare favourably with imaging measurements.

MSC:
76-05 Experimental work for problems pertaining to fluid mechanics
76B15 Water waves, gravity waves; dispersion and scattering, nonlinear interaction
86A05 Hydrology, hydrography, oceanography
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Richardson, Trans. Instn Chem. Engrs 32 pp 35– (1954)
[2] van Rijn, J. Hydraul. Engng ASCE 110 pp 1613– (1984)
[3] DOI: 10.1016/S0301-9322(99)00050-6 · Zbl 1137.76554 · doi:10.1016/S0301-9322(99)00050-6
[4] Rajaratnam, J. Hydraul. Res. 19 pp 339– (1981)
[5] Chen, G?otechnique 56 pp 305– (2006)
[6] Chen, Vertical Buoyant Jets: A Review of Experimental Data (1980)
[7] DOI: 10.1063/1.2335887 · doi:10.1063/1.2335887
[8] DOI: 10.1017/S0022112086001404 · Zbl 0609.76058 · doi:10.1017/S0022112086001404
[9] Bakhmeteff, Hydraulics of Open Channels (1932)
[10] DOI: 10.1017/S0022112093000096 · doi:10.1017/S0022112093000096
[11] Baines, Topographic Effects in Stratified Flows (1995)
[12] Mohamed, J. Hydraul. Res. 30 pp 685– (1992)
[13] van Melkebeek, Terra Aqua 87 pp 19– (2002)
[14] Aderibigbe, J. Hydraul. Res. 34 pp 19– (1996)
[15] Mazurek, J. Hydraul. Res. 41 pp 195– (2003)
[16] Abbott, Computational Hydraulics. Elements of the Theory of Free Surface Flows (1979)
[17] Mathieu, An Introduction to Turbulent Flow (2000) · Zbl 0955.76001
[18] DOI: 10.1046/j.1365-3091.2003.00554.x · doi:10.1046/j.1365-3091.2003.00554.x
[19] Machin, Recent Research on Cable Jet Burial (2001)
[20] DOI: 10.1017/S0022112007006738 · Zbl 1178.76110 · doi:10.1017/S0022112007006738
[21] Kolmogorov, Dokl. Akad. Nauk SSSR 30 pp 301– (1941)
[22] Kobayashi, ASCE J. Waterways, Port, Coastal, Ocean Engng 128 pp 239– (2002)
[23] DOI: 10.1029/2000JC000557 · doi:10.1029/2000JC000557
[24] DOI: 10.1007/s10652-005-4656-0 · doi:10.1007/s10652-005-4656-0
[25] Hydon, Symmetry Methods for Differential Equations (2000)
[26] Zanker, Dredging pp 81– (1967)
[27] Hsu, J. Geophys. Res. 108 pp 1– (2003)
[28] Wilson, J. Hydraul. Engng ASCE 115 pp 825– (1989) · doi:10.1061/(ASCE)0733-9429(1989)115:6(825)
[29] Whitham, Linear and Nonlinear Waves (1974)
[30] DOI: 10.1017/S0022112004001636 · Zbl 1060.76504 · doi:10.1017/S0022112004001636
[31] DOI: 10.1017/S0022112097005077 · Zbl 0899.76223 · doi:10.1017/S0022112097005077
[32] DOI: 10.1046/j.1365-3091.2002.00433.x · doi:10.1046/j.1365-3091.2002.00433.x
[33] Hoffman, J. Plasma Phys. 1 pp 193– (1967)
[34] Ungarish, Hydrodynamics of Suspensions (1993) · doi:10.1007/978-3-662-01651-0
[35] Guy, Geol. Surv. Prof. Paper 462-I pp none– (1966)
[36] DOI: 10.1017/S0022112004001326 · Zbl 1065.76194 · doi:10.1017/S0022112004001326
[37] DOI: 10.1103/PhysRevLett.95.014501 · doi:10.1103/PhysRevLett.95.014501
[38] DOI: 10.1061/(ASCE)0733-9429(1996)122:10(549) · doi:10.1061/(ASCE)0733-9429(1996)122:10(549)
[39] Freds?e, Mechanics of Coastal Sediment Transport (1992)
[40] Strang, Linear Algebra and its Applications (1988)
[41] DOI: 10.1017/S0022112002008455 · Zbl 1142.76344 · doi:10.1017/S0022112002008455
[42] Stoker, Water waves (1957)
[43] DOI: 10.1017/S0022112059000738 · Zbl 0086.40706 · doi:10.1017/S0022112059000738
[44] Stein, J. Hydraul. Res. 31 pp 723– (1993)
[45] Durbin, Statistical Theory and Modeling for Turbulent Flows (2001) · Zbl 1030.76001
[46] Dronkers, Dynamics of Coastal Systems (2005) · doi:10.1142/5781
[47] Rouse, Trans. ASCE 102 pp 532– (1937)
[48] DOI: 10.1029/2003JC001877 · doi:10.1029/2003JC001877
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.