zbMATH — the first resource for mathematics

Fountains impinging on a density interface. (English) Zbl 1159.76300
Summary: We present an experimental study of an axisymmetric turbulent fountain in a two-layer stratified environment. Interacting with the interface, the fountain is observed to exhibit three regimes of flow. It may penetrate the interface, but nonetheless return to the source where it spreads as a radially propagating gravity current; the return flow may be trapped at the interface where it spreads as a radially propagating intrusion or it may do both. These regimes have been classified using empirically determined regime parameters which govern the relative initial momentum of the fountain and the relative density difference of the fountain and the ambient fluid. The maximum vertical distance travelled by the fountain in a two-layer fluid has been theoretically determined by extending the theory developed for fountains in a homogeneous environment. The theory compares favourably with experimental measurements. We have also developed a theory to analyse the initial speeds of the resulting radial currents. The spreading currents exhibited two different flow regimes: a constant-velocity regime and an inertia-buoyancy regime in which the front position, \(R\), scales with time, \(t\), as \(R \sim t^{3/4}\). These regimes were classified using a critical Froude number which characterized the competing effects of momentum and buoyancy in the currents.

76-05 Experimental work for problems pertaining to fluid mechanics
76F45 Stratification effects in turbulence
Full Text: DOI
[1] Turner, Buoyancy Effects in Fluids (1973) · Zbl 0262.76067 · doi:10.1017/CBO9780511608827
[2] Mellor, Introduction to Physical Oceanography (1996)
[3] Timothy, J. Hydraul. Div. 103 pp 543– (1977)
[4] DOI: 10.1016/0894-1777(94)00095-P · doi:10.1016/0894-1777(94)00095-P
[5] DOI: 10.1016/0017-9310(78)90001-7 · doi:10.1016/0017-9310(78)90001-7
[6] McDougall, Tellus 33 pp 313– (1981)
[7] DOI: 10.1017/S0022112089001448 · Zbl 0673.76110 · doi:10.1017/S0022112089001448
[8] DOI: 10.1146/annurev.fl.14.010182.001201 · doi:10.1146/annurev.fl.14.010182.001201
[9] DOI: 10.1017/S002211200500635X · Zbl 1078.76502 · doi:10.1017/S002211200500635X
[10] DOI: 10.1016/j.enbuild.2004.07.011 · doi:10.1016/j.enbuild.2004.07.011
[11] DOI: 10.1007/s003480000260 · doi:10.1007/s003480000260
[12] Lee, Turbulent Buoyant Jets and Plumes: A Langrangian Approach (2003) · doi:10.1007/978-1-4615-0407-8
[13] DOI: 10.1061/(ASCE)0733-9429(2000)126:6(446) · doi:10.1061/(ASCE)0733-9429(2000)126:6(446)
[14] DOI: 10.1146/annurev.fl.21.010189.001533 · doi:10.1146/annurev.fl.21.010189.001533
[15] DOI: 10.1016/0017-9310(93)80075-6 · doi:10.1016/0017-9310(93)80075-6
[16] DOI: 10.1016/0004-6981(79)90078-7 · doi:10.1016/0004-6981(79)90078-7
[17] DOI: 10.1115/1.1311786 · doi:10.1115/1.1311786
[18] DOI: 10.1017/S0022112000001907 · Zbl 0993.76035 · doi:10.1017/S0022112000001907
[19] Fischer, Mixing in Inland and Coastal Waters (1979)
[20] DOI: 10.1017/S0022112097008252 · Zbl 0945.76533 · doi:10.1017/S0022112097008252
[21] DOI: 10.1017/S0022112090002099 · doi:10.1017/S0022112090002099
[22] Baines, ?Jets and Plumes? in Environmental Hydraulics (1996)
[23] Abraham, Jet diffusion in stagnant ambient fluid (1963)
[24] Scorer, Intl J. Air Pollution 1 pp 198– (1959)
[25] Rodi, Turbulent Buoyant Jets and Plumes (1982)
[26] Rawn, J. Sanitary Engng Div. Proc. ASCE 86 pp 65– (1960)
[27] DOI: 10.1002/qj.49708134803 · doi:10.1002/qj.49708134803
[28] Morton, Proc. R. Soc. Lond. 234 pp 1– (1956)
[29] DOI: 10.1017/S002211205900012X · Zbl 0126.42903 · doi:10.1017/S002211205900012X
[30] Morton, Intl J. Air Pollution 1 pp 184– (1959)
[31] DOI: 10.1007/BF01322802 · doi:10.1007/BF01322802
[32] DOI: 10.1017/S0022112066001526 · doi:10.1017/S0022112066001526
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.