×

zbMATH — the first resource for mathematics

Meshless local Petrov-Galerkin (MLPG) method for the unsteady magnetohydrodynamic (MHD) flow through pipe with arbitrary wall conductivity. (English) Zbl 1159.76034
Summary: A meshless local Petrov-Galerkin method is given to obtain the numerical solution of coupled equations for velocity and magnetic field for unsteady magnetohydrodynamic flow through a pipe of rectangular section having arbitrary conducting walls. Computations have been carried out for different Hartmann numbers and wall conductivities at various time levels. The method is based on the local weak form and the moving least squares (MLS) approximation. For the MLS, nodal points spread over the analyzed domain are utilized to approximate the interior and boundary variables. A time stepping method is employed to deal with the time derivative. Finally, numerical results are presented showing the behaviour of velocity and induced magnetic field across the section.

MSC:
76M25 Other numerical methods (fluid mechanics) (MSC2010)
76W05 Magnetohydrodynamics and electrohydrodynamics
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Atluri, S.N., The meshless method (MLPG) for domain and BIE discretizations, (2004), Tech Science Press · Zbl 1105.65107
[2] Atluri, S.N.; Kim, H.G.; Cho, J.Y., A critical assessment of the truly meshless local petrov – galerkin (MLPG) and local boundary integral equation (LBIE) methods, Comput. mech., 24, 348-372, (1999) · Zbl 0977.74593
[3] Atluri, S.N.; Shen, S., The meshless local petrov – galerkin (MLPG) method: a simple and less-costly alternative to the finite element and boundary element methods, CMES: comp. modeling eng. sci., 3, 1, 11-51, (2002) · Zbl 0996.65116
[4] Atluri, S.N.; Shen, S., The meshless local petrov – galerkin (MLPG) method, (2002), Tech Science Press · Zbl 1012.65116
[5] Atluri, S.N.; Zhu, T., A new meshless local petrov – galerkin (MLPG) approach in computational mechanics, Comput. mech., 22, 117-127, (1998) · Zbl 0932.76067
[6] Atluri, S.N.; Zhu, T., A new meshless local petrov – galerkin (MLPG) approach to nonlinear problems in computer modeling and simulation, Comput. model. simul. eng., 3, 187-196, (1998)
[7] Atluri, S.N.; Zhu, T., The meshless local petrov – galerkin (MLPG) approach for solving problems in elasto-statics, Comput. mech., 25, 169-179, (2000) · Zbl 0976.74078
[8] Barrett, K.E., Duct flow with a transverse magnetic field at high Hartmann numbers, Int. J. numer. meth. eng., 50, 1893-1906, (2001) · Zbl 0998.76045
[9] Barry, W., A wachspress meshless local petrov – galerkin method, Engrg. anal. bound. elem., 28, 509-523, (2004) · Zbl 1130.74486
[10] Batra, R.C.; Porfirib, M.; Spinello, D., Analysis of electrostatic MEMS using meshless local petrov – galerkin (MLPG) method, Engrg. anal. bound. elem., 30, 949-962, (2006) · Zbl 1195.74276
[11] Bozkaya, C.; Tezer-Sezgin, M., Boundary element solution of unsteady magnetohydrodynamic duct flow with differential quadrature time integration scheme, Int. J. numer. meth. fluids, 51, 567-584, (2006) · Zbl 1089.76040
[12] Bozkaya, C.; Tezer-Sezgin, M., Fundamental solution for coupled magnetohydrodynamic flow equations, J. comput. appl. math., 203, 125-144, (2007) · Zbl 1172.76383
[13] Bozkaya, C.; Tezer-Sezgin, M., Time-domain BEM solution of convection – diffusion-type MHD equations, Int. J. numer. meth. fluids, 56, 1969-1991, (2008) · Zbl 1388.76191
[14] Deeks, A.J.; Augarde, Ch.E., A hybrid meshless local petrov – galerkin method for unbounded domains, Comput. methods appl. mech. engrg., 196, 843-852, (2007) · Zbl 1121.74471
[15] Dehghan, M.; Mirzaei, D., The meshless local petrov – galerkin (MLPG) method for the generalized two-dimensional non-linear Schrödinger equation, Engrg. anal. bound. elem., 32, (2008) · Zbl 1244.65139
[16] Demendy, Z.; Nagy, T., A new algorithm for solution of equations of MHD channel flows at moderate Hartmann numbers, Acta mech., 123, 135-149, (1997) · Zbl 0902.76058
[17] Gold, R.R., Magnetohydrodynamic pipe flow, part 1, J. fluid mech., 21, 577-590, (1965)
[18] Gupta, S.C.; Singh, B., Unsteady MHD flow in a rectangular channel under transverse magnetic field, Indian J. pure appl. math., 3, 6, 1038-1047, (1972)
[19] Hu, D.A.; Long, S.Y.; Liu, K.Y.; Li, G.Y., A modified meshless local petrov – galerkin method to elasticity problems in computer modeling and simulation, Engrg. anal. bound. elem., 30, 399-404, (2006) · Zbl 1187.74258
[20] Li, Q.; Soric, J.; Jarak, T.; Atluri, S.N., A locking-free meshless local petrov – galerkin formulation for thick and thin plates, J. comput. phys., 208, 116-133, (2005) · Zbl 1115.74369
[21] Liu, K.Y.; Long, S.Y.; Li, G.Y., A simple and less-costly meshless local petrov – galerkin (MLPG) method for the dynamic fracture problem, Engrg. anal. bound. elem., 30, 72-76, (2006) · Zbl 1195.74287
[22] Long, S.Y.; Liu, K.Y.; Hu, D.A., A new meshless method based on MLPG for elastic dynamic problems, Engrg. anal. bound. elem., 30, 43-48, (2006) · Zbl 1195.74291
[23] Pecher, R., Efficient cubature formulae for MLPG and related methods, Int. J. numer. meth. engrg., 65, 566-593, (2006) · Zbl 1114.65143
[24] Qian, L.F.; Batra, R.C., Three-dimensional transient heat conduction in a functionally graded thick plate with a higher-order plate theory and a meshless local petrov – galerkin method, Comput. mech., 35, 214-226, (2005) · Zbl 1143.74321
[25] Ramos, J.I.; Winowich, N.S., Finite difference and finite element methods for MHD channel flows, Int. J. numer. meth. fluids, 11, 907-934, (1990) · Zbl 0704.76066
[26] Salah, N.B.; Soulaimani, W.G.; Habashi, W.G., A finite element method for magnetohydrodynamic, Comput. methods appl. mech. engrg., 190, 5867-5892, (2001) · Zbl 1044.76030
[27] Sellountos, E.J.; Polyzos, D., A MLPG(LBIE) approach in combination with BEM, Comput. methods appl. mech. engrg., 164, 859-875, (2005) · Zbl 1112.74555
[28] Seungsoo, L.; Dulikravich, G.S., Magnetohydrodynamic steady flow computation in three dimensions, Int. J. numer. meth. fluids, 13, 917-936, (1991) · Zbl 0741.76049
[29] Shercliff, J.A., Steady motion of conducting fluids in pipes under transverse magnetic fields, Proc. camb. phil. soc., 49, 136-144, (1953) · Zbl 0050.19404
[30] Shercliff, J.A., The flow of conducting fluids in circular pipes under transverse magnetic fields, J. fluid mech., 1, 644-666, (1956) · Zbl 0074.21106
[31] Shercliff, J.A., Magnetohydrodynamic pipe flow. part 2. high Hartmann number, J. fluid mech., 13, 634-635, (1962) · Zbl 0117.43302
[32] Sheu, T.W.H.; Lin, R.K., Development of a convection – diffusion – reaction magnetohydrodynamic solver on nonstaggered grids, Int. J. numer. meth. fluids, 45, 1209-1233, (2004) · Zbl 1060.76619
[33] Singh, B.; Lal, J., MHD axial flow in a triangular pipe under transverse magnetic field, Indian J. pure appl. math., 18, 101-115, (1978) · Zbl 0383.76094
[34] Singh, B.; Lal, J., Finite element method of MHD channel flow with arbitrary wall conductivity, J. math. phys. sci., 18, 501-516, (1984) · Zbl 0574.76117
[35] Singh, B.; Lal, J., Finite element method in MHD channel flow problems, Int. J. numer. meth. eng., 18, 1091-1111, (1982)
[36] Singh, B.; Lal, J., Finite element method for unsteady MHD flow through pipes with arbitrary wall conductivity, Int. J. numer. meth. fluids, 4, 291-302, (1984) · Zbl 0547.76119
[37] Sladek, J.; Sladek, V.; Hellmich, Ch.; Eberhardsteiner, J., Heat conduction analysis of 3-D axisymmetric and anisotropic FGM bodies by meshless local petrov – galerkin method, Comput. mech., 39, 323-333, (2007) · Zbl 1169.80001
[38] Sladek, J.; Sladek, V.; Hon, Y.C., Inverse heat conduction problems by meshless local petrov – galerkin method, Engrg. anal. bound. elem., 30, 650-661, (2006) · Zbl 1195.80020
[39] Sladek, J.; Sladek, V.; Zhang, Ch.; Schanz, M., Meshless local petrov – galerkin method for continuously nonhomogeneous linear viscoelastic solids, Comput. mech., 37, 279-289, (2006) · Zbl 1103.74058
[40] Tezer-Sezgin, M., Boundary element method solution of MHD flow in a rectangular duct, Int. J. numer. meth. fluids, 18, 937-952, (1994) · Zbl 0814.76063
[41] Tezer-Sezgin, M.; Bozkaya, C., Boundary element method solution of magnetohydrodynamic flow in a rectangular duct with conducting walls parallel to applied magnetic field, Comput. mech., 41, 769-775, (2008) · Zbl 1241.76323
[42] Tezer-Sezgin, M.; Han Aydin, S., Solution of magnetohydrodynamic flow problems using the boundary element method, Eng. anal. bound. elem., 30, 411-418, (2006) · Zbl 1187.76703
[43] Tezer-Sezgin, M.; Köksal, S., Finite element method for solving MHD flow in a rectangular duct, Int. J. numer. meth. eng., 28, 445-459, (1989) · Zbl 0669.76140
[44] Vavourakis, V.; Polyzos, D., A MLPG(LBIE) numerical method for solving 2D incompressible and nearly incompressible elastostatic problems, Commun. numer. meth. engrg., 24, 281-296, (2008) · Zbl 1419.74263
[45] Verardi, S.L.L.; Machado, J.M.; Cardoso, J.R., The element-free Galerkin method applied to the study of fully developed magnetohydrodynamic duct flows, IEEE trans. magnetics, 38, 2, 941-944, (2002)
[46] Verardi, S.L.L.; Machado, J.M.; Shiyou, Y., The application of interpolating MLS approximations to the analysis of MHD flows, Finite elements anal. des., 39, 1173-1187, (2003)
[47] Xiao, J.R.; Gama, B.A.; Gillespie, J.W.; Kansa, E.J., Meshless solutions of 2D contact problems by subdomain variational inequality and MLPG method with radial basis functions, Engrg. anal. bound. elem., 29, 95-106, (2005) · Zbl 1182.74261
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.