×

zbMATH — the first resource for mathematics

A smoothed finite element method for plate analysis. (English) Zbl 1159.74434
Summary: A quadrilateral element with smoothed curvatures for Mindlin-Reissner plates is proposed. The curvature at each point is obtained by a non-local approximation via a smoothing function. The bending stiffness matrix is calculated by a boundary integral along the boundaries of the smoothing elements (smoothing cells). Numerical results show that the proposed element is robust, computational inexpensive and simultaneously very accurate and free of locking, even for very thin plates. The most promising feature of our elements is their insensitivity to mesh distortion.

MSC:
74S05 Finite element methods applied to problems in solid mechanics
74K20 Plates
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] ABAQUS/Standard User’s Manual, Version 6.4, Hibbitt, Karlsson and Sorensen, Inc., Rawtucket, Rhode Island, 2004.
[2] F. Armero, D. Ehrlich, Finite element methods for the multi-scale modeling of softening hinge lines in plates at failure. · Zbl 1129.74043
[3] Bathe, K.J., Finite element procedures, (1996), Prentice-Hall/MIT Englewood Cliffs, NJ/MA · Zbl 0511.73065
[4] Bathe, K.J.; Dvorkin, E.N., A four-node plate bending element based on Mindlin/reissener plate theory and a mixed interpolation, Int. J. numer. methods engrg., 21, 367-383, (1985) · Zbl 0551.73072
[5] Bathe, K.J.; Dvorkin, E.N., A formulation of general shell elements. the use of mixed interpolation of tensorial components, Int. J. numer. methods engrg., 22, 697-722, (1986) · Zbl 0585.73123
[6] J.L. Batoz, G. Dhatt, Modélisation des structures par éléments finis, vol. 2, poutres et plaques, Hermès, 1990. · Zbl 0831.73001
[7] Bazeley, G.P.; Cheung, Y.K.; Irons, B.M.; Zienkiewicz, O.C., Triangular elements in plate bending, Proceedings of the first conference, on matrix methods in structural mechanics, (1965), Wright-Patterson AFB Ohio
[8] Belytschko, T.; Black, T., Elastic crack growth in finite elements with minimal remeshing, Int. J. numer. methods engrg., 45, 5, 601-620, (1999) · Zbl 0943.74061
[9] Belytschko, T.; Moes, N.; Usui, S.; Parimi, C., Arbitrary discontinuities in finite elements, Int. J. numer. methods engrg., 50, 4, 993-1013, (2001) · Zbl 0981.74062
[10] Bletzinger, K.; Bischoff, M.; Ramm, E., A unified approach for shear-locking-free triangular and rectangular shell finite elements, Comput. struct., 75, 321-334, (2000)
[11] Bordas, S.; Conley, J.G.; Moran, B.; Gray, J.; Nichols, E., A simulation-based design paradigm for complex cast components, Engrg. comput., 23, 1, 25-37, (2007)
[12] S. Bordas, M. Duflot, Derivative recovery and a posteriori error estimation in extended finite element methods, Comput. Methods Appl. Mech. Engrg., in press, http://dx.doi.org/10.1016/j.cma.2007.03.011. · Zbl 1173.74401
[13] S. Bordas, M. Duflot, P. Le, A simple a posteriori error estimator for the extended finite element method, Commun. Numer. Methods Engrg., in press, doi:10.1002/cnm.1001. · Zbl 1156.65093
[14] Bordas, S.; Moran, B., Enriched finite elements and level sets for damage tolerance assessment of complex structures, Engrg. fract. mech., 73, 1176-1201, (2006)
[15] S. Bordas, V.P. Nguyen, C. Dunant, H. Nguyen-Dang, A. Guidoumm, An extended finite element library, Int. J. Numer. Methods Engrg., doi:10.1002/nme.1966. · Zbl 1194.74367
[16] S. Bordas, T. Rabczuk, G. Zi, Three-dimensional crack initiation, propagation, branching and junction in non-linear materials by an extended meshfree method without asymptotic enrichment, Engrg. Fract. Mech., in press, doi:10.1016/j.engfracmech.2007.05.010. · Zbl 1161.74054
[17] Chen, J.S.; Wu, C.T.; Yoon, S.; You, Y., A stabilized conforming nodal integration for Galerkin mesh-free methods, Int. J. numer. methods engrg., 50, 435-466, (2001) · Zbl 1011.74081
[18] Chen, W.; Cheung, Y.K., Refined quadrilateral element based on Mindlin/Reissner plate theory, Int. J. numer. methods engrg., 47, 605-627, (2000) · Zbl 0970.74072
[19] Chinosi, C.; Lovadina, C.; Marini, L.D., Nonconforming locking-free finite elements for reissner – mindlin plates, Comput. methods appl. mech. engrg., 195, 3448-3460, (2006) · Zbl 1119.74047
[20] Dai, K.Y.; Liu, G.R., Free and forced vibration analysis using the smoothed finite element method (SFEM), J. sound vibration, 301, 3-5, 803-820, (2007)
[21] Dai, K.Y.; Liu, G.R.; Nguyen, T.T., An n-sided polygonal smoothed finite element method (nsfem) for solid mechanics, Finite elements anal. design, 43, 11-12, 847-860, (2007)
[22] M. Duflot, S. Bordas, An extended global recovery procedure for a posteriori error estimation in extended finite element methods, Int. J. Numer. Methods Engrg., in press. · Zbl 1195.74171
[23] Dunant, C.; Nguyen, P.; Belgasmia, M.; Bordas, S.; Guidoum, A.; Nguyen-Dang, H., Architecture trade-offs of including a mesher in an object-oriented extended finite element code, Eur. J. mech., 16, 237-258, (2007), (special issue on the extended finite element method)
[24] Dvorkin, E.N.; Bathe, K.J., A continuum mechanics based four-node shell element for general nonlinear analysis, Engrg. comput., (1994)
[25] Fraeijs de Veubeke, B.; Sander, G., An equilibrium model for plate bending, International journal of solids structures, (1968), Pergamon Press London · Zbl 0168.22602
[26] Garcia, O.; Fancello, E.A.; Barcellos, C.S.; Duarte, C.A., hp clouds in mindlin’s thick plate model, Int. J. numer. methods engrg., 47, 1381-1400, (2000) · Zbl 0987.74067
[27] Gruttmann, F.; Wagner, W., A stabilized one-point integrated quadrilateral reissener – mindlin plate element, Int. J. numer. methods engrg., 61, 2273-2295, (2004) · Zbl 1075.74646
[28] Hughes, T.J.R., The finite element method, (1987), Prentice-Hall Englewood Cliffs, NJ
[29] Hughes, T.J.R.; Cohen, M.; Haroun, M., Reduced and selective integration techniques in finite element method of plates, Nuclear engrg. des., 46, 203-222, (1978)
[30] Hughes, T.J.R.; Taylor, R.L.; Kanoknukulchai, W., Simple and efficient element for plate bending, Int. J. numer. methods engrg., 11, 1529-1543, (1977) · Zbl 0363.73067
[31] Hughes, T.J.R.; Tezduyar, T., Finite elements based upon Mindlin plate theory with particular reference to the four-node isoparametric element, J. appl. mech., (1981) · Zbl 0459.73069
[32] Jensen, D.D.; Park, K.C., Equilibrium constrained assumed natural co-ordinate strain plate elements, Int. J. numer. methods engrg., 38, 2951-2977, (1995) · Zbl 0851.73064
[33] Batoz, J.L.; Tahar, M.B., Evaluation of a new quadrilateral thin plate bending element, Int. J. numer. methods engrg., 18, 1655-1677, (1982) · Zbl 0489.73080
[34] Krysl, P.; Belytschko, T., Analysis of thin plates by the element-free Galerkin method, Comput. mech., 16, 1-10, (1995) · Zbl 0841.73064
[35] Krysl, P.; Belytschko, T., Analysis of thin shells by the element-free Galerkin method, Int. J. numer. methods engrg., 33, 3057-3080, (1996) · Zbl 0929.74126
[36] Lee, S.W.; Pian, T.H.H., Improvement of plate and shell finite element by mixed formulation, Aiaa j., 16, 29-34, (1978) · Zbl 0368.73067
[37] Lee, S.W.; Wong, C., Mixed formulation finite elements for Mindlin theory plate bending, Int. J. numer. methods engrg., 18, 1297-1311, (1982) · Zbl 0486.73069
[38] Leissa, A.W., Vibration of plates, Nasa sp-160, (1969) · Zbl 0181.52603
[39] Li, Q.; Soric, J.; Jarak, T.; Atluri, S.N., A locking-free meshless local petrov – galerkin formulation for thick and thin plates, J. comput. phys., 208, 116-133, (2005) · Zbl 1115.74369
[40] Liu, G.R.; Dai, K.Y.; Nguyen, T.T., A smoothed finite element for mechanics problems, Comput. mech., 39, 859-877, (2007) · Zbl 1169.74047
[41] Liu, G.R.; Nguyen, T.T.; Dai, K.Y.; Lam, K.Y., Theoretical aspects of the smoothed finite element method (SFEM), Int. J. numer. methods engrg., 71, 8, 902-930, (2007) · Zbl 1194.74432
[42] Liu, I.W.; Lin, C.C., A new conforming quadrilateral plate bending element, Int. J. numer. methods engrg., 36, 2921-2937, (1993) · Zbl 0781.73070
[43] Moes, N.; Belytschko, T., Extended finite element method for cohesive crack growth, Engrg. fract. mech., 69, 813-834, (2002)
[44] Moes, N.; Dolbow, J.; Belytschko, T., A finite element method for crack growth without remeshing, Int. J. numer. methods engrg., 46, 1, 133-150, (1999) · Zbl 0955.74066
[45] Morley, L.S.D., Skew plates and structures, (1963), Pergamon Press Oxford · Zbl 0124.17704
[46] X.H. Nguyen, S. Bordas, H. Nguyen-Dang, Smooth strain finite elements: selective integration. Collection of Papers from Prof. Nguyen-Dang Hung’s former students, Vietnam National University, HCM Publishing House, 2006, pp. 88-106.
[47] Nguyen, T.T.; Liu, G.R.; Dai, K.Y.; Lam, K.Y., Selective smoothed finite element method, Tsinghua sci. tech., 12, 5, 497-508, (2007) · Zbl 1194.74432
[48] Pian, T.H.H.; Tong, P., Basis of finite elements for solids continua, Int. J. numer. methods engrg., 1, 3-28, (1969) · Zbl 0167.52805
[49] Prathap, G., The finite element method in structural mechanics, (1993), Kluwer Academic Publishers Dordrect · Zbl 0849.73001
[50] T. Rabczuk, S. Bordas, G. Zi, A three-dimensional meshfree method for continuous crack initiation, nucleation and propagation in statics and dynamics, Comput. Mech., 2007, doi:10.1007/s00466-006-0122-1. · Zbl 1161.74054
[51] Razzaque, A., Program for triangular bending elements with derivative smoothing, Int. J. numer. methods engrg., 6, 333-345, (1973)
[52] Simo, J.C.; Hughes, T.J.R., On the variational foundation of assumed strain methods, ASME J. appl. mech., 53, 51-54, (1986) · Zbl 0592.73019
[53] Simo, J.C.; Rifai, M.S., A class of mixed assumed strain methods and the method of incompatible modes, Int. J. numer. methods engrg., 29, 1595-1638, (1990) · Zbl 0724.73222
[54] Soric, J.; Li, Q.; Jarak, T.; Atluri, S.N., The meshless local petrov – galerkin (MLPG) formulation for analysis of thick plates, Comput. model. engrg. sci., 6, 349-357, (2004) · Zbl 1075.74083
[55] Taylor, R.L.; Auricchio, F., Linked interpolation for reissner – mindlin plate elements. part I - A simple triangle, Int. J. numer. methods engrg., 36, 3056-3066, (1993) · Zbl 0781.73071
[56] Wang, D.; Chen, J.S., Locking-free stabilized conforming nodal integration for meshfree mindlin – reissner plate formulation, Comput. methods appl. mech. engrg., 193, 1065-1083, (2004) · Zbl 1060.74675
[57] Wang, D.; Dong, S.B.; Chen, J.S., Extended meshfree analysis of transverse and inplane loading of a laminated anisotropic plate of general planform geometry, Int. J. solids struct., 43, 144-171, (2006) · Zbl 1119.74632
[58] Washizu, K., Variational methods in elasticity and plasticity, (1982), Pergamon Press New York · Zbl 0164.26001
[59] Weissman, S.L.; Taylor, R.L., Resultant fields for mixed plate bending elements, Comput. methods appl. mech. engrg., 79, 321-355, (1990) · Zbl 0743.73031
[60] E. Wyart, Three-dimensional crack analysis in aeronautical structures using the Substructured Finite Element/Extended Finite Element Method, PhD thesis, Université catholique de Louvain, 2007.
[61] E. Wyart, D. Coulon, M. Duflot, T. Pardoen, J.-F. Remacle, F. Lani, A substructured fe shell/xfe 3d method for crack analysis. Int. J. Numer. Methods Engrg., in press. · Zbl 1194.74482
[62] E. Wyart, D. Coulon, P. Martiny, T. Pardoen, J.-F. Remacle, F. Lani, A substructured fe/xfe method for stress intensity factors computation in an industrial structure, Rev. Eur. Mécanique Numérique, in press. · Zbl 1208.74169
[63] E. Wyart, M. Duflot, D. Coulon, P. Martiny, T. Pardoen, J.-F. Remacle, F. Lani, Substructuring fe – xfe approaches applied to rack propagation, J. Comput. Appl. Math., in press. · Zbl 1350.74023
[64] Yoo, J.W.; Moran, B.; Chen, J.S., Stabilized conforming nodal integration in the natural-element method, Int. J. numer. methods engrg., 60, 861-890, (2004) · Zbl 1060.74677
[65] Zienkiewicz, O.C.; Zeng, L.F.; Xu, Z.; Samuelsson, A.; Wiberg, N.E., Linked interpolation for reissner – mindlin plate elements: part i-a simple quadrilateral, Int. J. numer. methods engrg., 36, 3043-3056, (1993) · Zbl 0780.73090
[66] Zienkiewicz, O.C.; Taylor, R.L., The finite element method, (2000), Butterworth-Heinemann Oxford · Zbl 0991.74002
[67] Zienkiewicz, O.C.; Taylor, R.L.; Too, J.M., Reduced integration technique in general analysis of plates and shells simple and efficient element for plate bending, Int. J. numer. methods engrg., 3, 275-290, (1971) · Zbl 0253.73048
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.