×

zbMATH — the first resource for mathematics

Boundary locking induced by penalty enforcement of essential boundary conditions in mesh-free methods. (English) Zbl 1159.65361
The authors explore the boundary locking, induced by the penalty enforcement of the essential boundary conditions in mesh-free methods. A remedy is proposed to solve the problem of the over-constraint phenomena. The theoretical explanations are justified through various numerical tests.

MSC:
65N35 Spectral, collocation and related methods for boundary value problems involving PDEs
76M25 Other numerical methods (fluid mechanics) (MSC2010)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Lucy, L.B., A numerical approach to the testing of the fission hypothesis, Astron. J,, 82, 12, 1013-1024, (1977)
[2] Liszka, T.; Orkisz, J., The finite difference method at arbitrary irregular grids and its application in applied mechanics, Comput. struct., 11, 102, 83-95, (1980) · Zbl 0427.73077
[3] Nayroles, B.; Touzot, G.; Villon, P., Generalizing the finite element method: diffuse approximation and diffuse elements, Comput. mech., 10, 5, 307-318, (1992) · Zbl 0764.65068
[4] Belytschko, T.; Krongauz, Y.; Organ, D.; Fleming, M.; Krysl, P., Meshless methods: an overview and recent developments, Comput. methods appl. mech. engrg., 139, 1-4, 3-47, (1996) · Zbl 0891.73075
[5] Liu, W.K.; Jun, S.; Zhang, Y.F., Reproducing kernel particle methods, Int. J. numer. methods fluids, 20, 8-9, 1081-1106, (1995) · Zbl 0881.76072
[6] Babuska, I.; Melenk, J., The partition of unity method, Int. J. numer. methods engrg., 40, 4, 727-758, (1997) · Zbl 0949.65117
[7] Duarte, C.A.; Oden, J.T., An h-p adaptive method using clouds, Comput. methods appl. mech. engrg., 139, 1-4, 237-262, (1996) · Zbl 0918.73328
[8] Atluri, S.N.; Zhu, T., A new meshless local petrov – galerkin (MLPG) approach in computational mechanics, Comput. mech., 22, 2, 117-127, (1998) · Zbl 0932.76067
[9] Atluri, S.N., The meshless local-petrov – galerkin method for domain & BIE discretizations, (2004), Tech Science Press Forsyth, GA
[10] Cho, J.Y.; An, J.M.; Song, Y.M.; Lee, S.; Choi, D.W., Coupled analysis of independently modeled finite element substructures by moving least squares displacement welding technique, CMES: comput. model. eng. sci., 9, 1, 1-17, (2005)
[11] Lancaster, P.; Salkauskas, K., Surfaces generated by moving least squares methods, Math. comput., 37, 155, 141-158, (1981) · Zbl 0469.41005
[12] Atluri, S.N.; Cho, J.Y.; Kim, H.G., Analysis of thin beams, using the meshless local petrov – galerkin method, with generalized moving least squares interpolations, Comput. mech., 24, 5, 334-347, (1999) · Zbl 0968.74079
[13] Zhu, T.; Atluri, S.N., A modified collocation method and a penalty formulation for enforcing the essential boundary conditions in the element free Galerkin method, Comput. mech., 21, 3, 211-222, (1998) · Zbl 0947.74080
[14] S.J. Kim, Y.J. Choi, Analysis of Mindlin plate by the element free Galerkin method applying penalty technique, in: Proceeding of 40th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, St. Louis, MO, 1999, pp. 403-410.
[15] Choi, Y.J.; Kim, S.J., Bending analysis of mindlin – reissner plates by the element free Galerkin method with penalty technique, KSME int. J., 17, 1, 64-76, (2003)
[16] Atluri, S.N.; Kim, H.G.; Cho, J.Y., A critical assessment of the truly meshless local petrov – galerkin (MLPG), and local boundary integral equation (LBIE) methods, Comput. mech., 24, 5, 348-372, (1999) · Zbl 0977.74593
[17] Chen, J.S.; Wang, H.P., New boundary condition treatment in meshfree computation of contact problems, Comput. methods appl. mech. engrg., 187, 3-4, 441-468, (2000) · Zbl 0980.74077
[18] Krongauz, Y.; Belytschko, T., Enforcement of essential boundary conditions in meshless approximations using finite elements, Comput. methods appl. mech. engrg., 131, 1-2, 133-145, (1996) · Zbl 0881.65098
[19] Reddy, J.N.; Rasmussen, M.L., Advanced engineering analysis, (1982), John Wiley & Sons New York
[20] Bartle, R.G.; Sherbert, D.R., Introduction to real analysis, (1982), John Wiley & Sons New York · Zbl 0494.26002
[21] Strang, G., Linear algebra and its applications, (1980), Academic Press New York · Zbl 0463.15001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.